Complex modular architecture around a simple toolkit of wing pattern genes

Abstract

Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. In Heliconius butterflies, a small number of genes control the development of diverse wing colour patterns. Here, we used full-genome sequencing of individuals across the Heliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around colour pattern genes is highly modular, with narrow genomic intervals associated with specific differences in colour and pattern. This modular architecture explains the diversity of colour patterns and provides a flexible mechanism for rapid morphological diversification.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Geographical distribution, phylogeny and colour pattern diversity of the Heliconius erato adaptive radiation.
Figure 2: Genomic divergence across the Heliconius erato phenotypic transition zones.
Figure 3: Association mapping in hybrid zones and phylogenetic comparisons identify the modular genetic architecture of black forewing variation.
Figure 4: Modular architecture of red pattern variation.
Figure 5: Independent modules generate convergent yellow hindwing bar phenotypes.
Figure 6: Modular regulatory architecture characterizes colour pattern diversity within the Heliconius erato radiation.

References

  1. 1

    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Lamas, G. in Hesperioidea – Papilionoidea. Gainesville, Florida: Association for Tropical Lepidoptera (ed. Lamas, G. ) 261–274 (Scientific Publisher, 2004).

    Google Scholar 

  5. 5

    Nijhout, H. F. The Development and Evolution of Butterfly Wing Patterns. (Smithsonian Institution, 1991).

    Google Scholar 

  6. 6

    Chouteau, M., Arias, M. & Joron, M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl Acad. Sci USA 113, 2164–2169 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Naisbit, R. E., Jiggins, C. D. & Mallet, J. Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene . Proc. Biol. Sci. 268, 1849–1854 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Turner, J. R. G. A tale of two butterflies. Nat. Hist. 84, 28–37 (1975).

    Google Scholar 

  9. 9

    Sheppard, P. M., Turner, J. R. G., Brown, K. S., Benson, W. W. & Singer, M. C. Genetics and the evolution of Muellerian mimicry in Heliconius Butterflies. Phil. Trans. R. Soc. B Biol. Sci. 308, 433–610 (1985).

    Article  Google Scholar 

  10. 10

    Joron, M. et al. A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biol. 4, e303 (2006).

    Article  Google Scholar 

  11. 11

    Papa, R. et al. Multi-allelic major effect genes interact with minor effect QTLs to control adaptive color pattern variation in Heliconius erato . PLoS ONE 8, e57033 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Kronforst, M. R., Kapan, D. D. & Gilbert, L. E. Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. Genetics 174, 535–539 (2006).

    Article  Google Scholar 

  13. 13

    Kapan, D. D. et al. Localization of mìllerian mimicry genes on a dense linkage map of Heliconius erato . Genetics 173, 735–757 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Reed, R. D. et al. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333, 1137–1141 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Martin, A. et al. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl Acad. Sci. USA 109, 12632–12637 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Nadeau, N. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).

    CAS  Article  Google Scholar 

  17. 17

    Martin, A. et al. Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. EvoDevo 5, 7 (2014).

    Article  Google Scholar 

  18. 18

    Carroll, S. B. Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Gallant, J. R. et al. Ancient homology underlies adaptive mimetic diversity across butterflies. Nat. Commun. 5, 1–10 (2014).

    Article  Google Scholar 

  20. 20

    Van’t Hof, A. E. The industrial melanism mutation in British peppered moths is a transposable element. Nature 534, 102–105 (2016).

    Article  Google Scholar 

  21. 21

    Rosser, N., Dasmahapatra, K. K. & Mallet, J. Stable Heliconius butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin. Evolution 68, 3470–3484 (2014).

    Article  Google Scholar 

  22. 22

    Supple, M., Papa, R., Hines, H. M., McMillan, W. O. & Counterman, B. A. Divergence with gene flow across a speciation continuum of Heliconius butterflies. BMC Evol. Biol. 15, 204 (2015).

    Article  Google Scholar 

  23. 23

    Hines, H. M. et al. Wing patterning gene redefines the mimetic history of Heliconius butterflies. Proc. Natl Acad. Sci. USA 108, 19666–19671 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Mallet, J. & Barton, N. H. Strong natural selection in a warning-color hybrid zone. Evolution 43, 421–431 (1989).

    Article  Google Scholar 

  25. 25

    Kapan, D. D. Three-butterfly system provides a field test of mìllerian mimicry. Nature 409, 18–20 (2001).

    Article  Google Scholar 

  26. 26

    Supple, M. A et al. Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies. Genome Res. 23, 1248–1257 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Martin, A. et al. Diversification of complex butter flywing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl Acad. Sci. USA 109, 12632–12637 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Martin, S. H. & Van Belleghem, S. M. Exploring evolutionary relationships across the genome using topology weighting. Preprint at bioRxiv http://dx.doi.org/10.1101/069112 (2016).

  29. 29

    Nadeau, N. J. et al. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato . Genome Res. 24, 1316–1333 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Danielsen, E. T. et al. Transcriptional control of steroid biosynthesis genes in the Drosophila prothoracic gland by Ventral veins lacking and Knirps . PLoS Genet. 10, e1004343 (2014).

    Article  Google Scholar 

  31. 31

    De Celis, J. F., Llimargas, M. & Casanova, J. Ventral veinless, the gene encoding the Cf1a transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster . Development 121, 3405–3416 (1995).

    CAS  PubMed  Google Scholar 

  32. 32

    Meier, S., Sprecher, S. G., Reichert, H. & Hirth, F. Ventral veins lacking is required for specification of the tritocerebrum in embryonic brain development of Drosophila . Mech. Dev. 123, 76–83 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Jivan, A ., Earnest, S., Juang, Y.-C. & Cobb, M. H. Radial spoke protein 3 is a mammalian protein kinase A-anchoring protein that binds ERK1/2. J. Biol. Chem. 284, 29437–29445 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Jiggins, C. D. & Mcmillan, W. O. The genetic basis of an adaptive radiation: warning colour in two Heliconius species. Proc. R. Soc. B 264, 1167–1175 (1997).

    Article  Google Scholar 

  35. 35

    Baxter, S. W., Johnston, S. E. & Jiggins, C. D. Butterfly speciation and the distribution of gene effect sizes fixed during adaptation. Heredity 102, 57–65 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Huber, B. et al. Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies. Heredity 114, 515–524 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Wallbank, R. W. R. et al. Evolutionary novelty in a butterfly wing pattern through enhancer shuffling. PLoS Biol. 14, e1002353 (2016).

    Article  Google Scholar 

  38. 38

    Maroja, L. S., Alschuler, R., Mcmillan, W. O. & Jiggins, C. D. Partial complementarity of the mimetic yellow bar phenotype in Heliconius butterflies. PLoS ONE 7, e48627 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Sheppard, P. M., Turner, J. R. G., Brown, K. S., Benson, W. W. & Singer, M. C. Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Phil. Trans. R. Soc. B Biol. Sci. 308, 433–610 (1985).

    Article  Google Scholar 

  40. 40

    Mallet, J. The genetics of warning colour in Peruvian hybrid zones of Heliconius erato and H. melpomene . Proc. R. Soc. B 236, 163–185 (1989).

    Article  Google Scholar 

  41. 41

    Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Kronforst, M. R. & Papa, R. The functional basis of wing patterning in Heliconius butterflies: The molecules behind mimicry. Genetics 200, 1–19 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Lewis, J. J. et al. ChIP-Seq-annotated Heliconius erato genome highlights patterns of cis-regulatory evolution in Lepidoptera. Cell Rep. 16, 2855–2863 (2016).

    CAS  Article  Google Scholar 

  44. 44

    Martin, A. & Reed, R. D. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev. Biol. 395, 367–378 (2014).

    CAS  Article  Google Scholar 

  45. 45

    Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Greenfield, P., Duesing, K., Papanicolaou, A. & Bauer, D. C. Sequence analysis Blue: correcting sequencing errors using consensus and context. Bioinformatics 30, 2723–2732 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Salmela, L. & Rivals, E. Sequence analysis LoRDEC: accurate and efficient long read error correction. Bioinformatics 30, 3506–3514 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  Google Scholar 

  49. 49

    English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  51. 51

    Rastas, P., Paulin, L., Hanski, I. & Lehtonen, R. Lep-MAP: fast and accurate linkage map construction for large SNP datasets. Bioinformatics 29, 3128–3134 (2013).

    CAS  Article  Google Scholar 

  52. 52

    Rastas, P., Calboli, F. C. F., Guo, B., Shikano, T. & Merilä, J. Construction of ultradense linkage maps with Lep-MAP2: Stickleback F2 recombinant crosses as an example. Genome Biol. Evol. 8, 78–93 (2015).

    Article  Google Scholar 

  53. 53

    Weisenfeld, N. I. et al. Comprehensive variation discovery in single human genomes. Nat. Genet. 46, 1350–1355 (2014).

    CAS  Article  Google Scholar 

  54. 54

    Love, R. R., Weisenfeld, N. I., Jaffe, D. B., Besansky, N. J. & Neafsey, D. E. Evaluation of DISCOVAR de novo using a mosquito sample for cost-effective short-read genome assembly. BMC Genomics 17, 187 (2016).

    Article  Google Scholar 

  55. 55

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  56. 56

    Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).

    CAS  Article  Google Scholar 

  57. 57

    Simão, F. A., Waterhouse, R. M., Ioannidis, P. & Kriventseva, E. V. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  Google Scholar 

  58. 58

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS  Article  Google Scholar 

  59. 59

    Chevreux, B. et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14, 1147–1159 (2004).

    CAS  Article  Google Scholar 

  60. 60

    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    CAS  Article  Google Scholar 

  61. 61

    Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

    CAS  Article  Google Scholar 

  62. 62

    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS  Article  Google Scholar 

  63. 63

    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker (2014); http://www.repeatmasker.org/

  64. 64

    Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–358 (2005).

    CAS  Article  Google Scholar 

  65. 65

    Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

    CAS  Article  Google Scholar 

  66. 66

    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS  Article  Google Scholar 

  67. 67

    Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).

    CAS  Article  Google Scholar 

  68. 68

    Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119 (2014).

    Article  Google Scholar 

  69. 69

    Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 11, 1–11 (2006).

    Google Scholar 

  70. 70

    Remmert, M., Biegert, A., Hauser, A. & Johannes, S. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

    CAS  Article  Google Scholar 

  71. 71

    Davey, J. W. et al. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3 6, 695–708 (2016).

    CAS  Article  Google Scholar 

  72. 72

    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    Article  Google Scholar 

  73. 73

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  Google Scholar 

  74. 74

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  75. 75

    Van der Auwera, G. a. et al. From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 11.10, 1–33 (2013).

    Google Scholar 

  76. 76

    Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583–589 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Nei, M. & Jin, L. Variances of the average numbers of nucleotide substitutions within and between populations. Mol. Biol. Evol. 6, 290–300 (1989).

    CAS  PubMed  Google Scholar 

  78. 78

    De Mita, S. & Siol, M. EggLib: processing, analysis and simulation tools for population genetics and genomics. BMC Genet. 13, 27 (2012).

    Article  Google Scholar 

  79. 79

    Nadeau, N. J. et al. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 367, 343–353 (2012).

    CAS  Article  Google Scholar 

  80. 80

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  Google Scholar 

  81. 81

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Article  Google Scholar 

  82. 82

    Boftelli, D. et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391–1394 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Tapia for maintaining the H. erato genome line and for generating our mapping family, and M. Vargas and C. Rosales for Illumina library preparation. We acknowledge the University of Puerto Rico, the Puerto Rico INBRE grant P20 GM103475 from the National Institute for General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH); CNRS Nouraugues and CEBA awards (B.A.C.); National Science Foundation awards DEB-1257839 (B.A.C.), DEB-1257689 (W.O.M.), DEB-1027019 (W.O.M.); awards 1010094 and 1002410 from the Experimental Program to Stimulate Competitive Research (EPSCoR) program of the National Science Foundation (NSF) for computational resources; and the Smithsonian Institution. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc.

Author information

Affiliations

Authors

Contributions

S.M.V.B., B.A.C., W.O.M. and R.P. designed the study and wrote the paper. P.R., A.P. and J.J.M. conducted genome assembly. P.R. conducted linkage map and genome quality assessment. A.P. conducted genome annotation. S.M.V.B. conducted population genomic, phylogenetic and comparative genomic analyses. M.R, M.A.S, H.H. and J.J.H. conducted comparative genomic analyses. S.H.M. contributed scripts for Twisst analyses. B.A.C., W.O.M., R.P., H.H., C.D.J., J.M., M.L., C.S., C.F.A. and G.M. collected samples for sequencing.

Corresponding author

Correspondence to Steven M. Van Belleghem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–35; Supplementary Tables 1–13 (PDF 5140 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Belleghem, S., Rastas, P., Papanicolaou, A. et al. Complex modular architecture around a simple toolkit of wing pattern genes. Nat Ecol Evol 1, 0052 (2017). https://doi.org/10.1038/s41559-016-0052

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing