Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bioaccumulation of persistent organic pollutants in the deepest ocean fauna


The legacy and reach of anthropogenic influence is most clearly evidenced by its impact on the most remote and inaccessible habitats on Earth. Here we identify extraordinary levels of persistent organic pollutants in the endemic amphipod fauna from two of the deepest ocean trenches (>10,000 metres). Contaminant levels were considerably higher than documented for nearby regions of heavy industrialization, indicating bioaccumulation of anthropogenic contamination and inferring that these pollutants are pervasive across the world’s oceans and to full ocean depth.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2


  1. Ramirez-Llodra, E. et al. PLoS ONE 6, p.e22588 (2011).

    Article  Google Scholar 

  2. Smith, K. L. et al. Proc. Natl Acad. Sci. USA 46, 19211–19218 (2009).

    Article  Google Scholar 

  3. Scheringer, M. et al. Environ. Sci. Pollut. R. 11, 41–48 (2004).

    Article  CAS  Google Scholar 

  4. Jamieson, A. J. et al. Trends Ecol. Evol. 25, 190–197 (2010).

    Article  Google Scholar 

  5. Rhind, S. M. Acta Vet. Scand. 54, S2 (2012).

    Article  Google Scholar 

  6. Ballschmiter, K. et al. Fresen. Z. Anal. Chem . 316, 242–246 (1983).

    Article  CAS  Google Scholar 

  7. Allchin, C. R., Law, R. J. & Morris, S. Environ. Pollut. 105, 197–207 (1999).

    Article  CAS  Google Scholar 

  8. Breivik, K. et al. Sci. Tot. Environ. 377, 296–307 (2007).

    Article  CAS  Google Scholar 

  9. Tanabe, S. Environ. Pollut. 50, 5–28 (1988).

    Article  CAS  Google Scholar 

  10. Martin, M., Lam, P. K. & Richardson, B. J. Mar. Pollut. Bull. 49, 375–382 (2004).

    Article  CAS  Google Scholar 

  11. Knezovich, J. P., Harrison, F. L. & Wilhelm, R. G. Water Air Soil Poll. 32, 233–245 (1987).

    Article  CAS  Google Scholar 

  12. Froescheis, O. et al. Chemosphere 40, 651–660 (2000).

    Article  CAS  Google Scholar 

  13. Jamieson, A.J. in Biological Sampling in the Deep Sea (eds Clarke, M. & Consalvey, M. ) 228–259 (Wiley-Blackwell, 2016).

    Book  Google Scholar 

  14. ICES Report of the ICES Advisory Committee on Marine Pollution (Cooperative Research Rep. 135, International Council for Exploration of the Sea, 1986).

  15. Phillips, D. J. H. in PCBs and the Environment Vol. II (ed. Waid, J. S. ) 127–181 (CRC Press, 1986).

    Google Scholar 

  16. Denton, G. R. et al. Water and Environmental Research Institute of the Western Pacific (WERI) Technical Report 87 (1997).

  17. Nie, X. et al. Mar. Pollut. Bull. 50, 537–546 (2005).

    Article  CAS  Google Scholar 

  18. Teng, M. et al. Chinese Sci. Bull. 58, 1751–1759 (2013).

    Article  CAS  Google Scholar 

  19. Lee, J. S. et al. Mar. Pollut. Bull. 34, 250–258 (1997).

    Article  CAS  Google Scholar 

  20. Takahashi, S. et al. Sci. Tot. Environ. 214, 49–64 (1998).

    Article  CAS  Google Scholar 

  21. Stewart, M. et al. Sci. Tot. Environ. 468, 202–210 (2014).

    Article  Google Scholar 

  22. Felker, G. B. Third World Q. 24, 255–282 (2003).

    Article  Google Scholar 

  23. Kaiser, J. Science 328, 1506–1509 ( 2010).

    Article  Google Scholar 

  24. Oguri, K. et al. Sci. Rep. 3, 1915 (2013).

    Article  Google Scholar 

  25. Linley, T. D. et al. Deep-Sea Res. I 114, 99–110 (2016).

    Article  Google Scholar 

  26. Rhind S. M. et al. J. Environ. Monit. 12, 1582–1593 (2010).

    Article  CAS  Google Scholar 

  27. Axelsson, M. & Gentili, F. PLoS ONE 9, e89643 (2014).

    Article  Google Scholar 

Download references


The Kermadec and Mariana ‘HADES’ expeditions (RV Thomas G. Thompson TN309, and RV Falkor FK141109) were funded through the National Science Foundation (NSF-OCE nos 1130712 and 1140494) and the Schmidt Ocean Institute. S.B.P. was supported by a Fellowship from the Leverhulme Trust. The analytical costs were supported by the Total Foundation (France) and the Marine Alliance for Science and Technology, Scotland (MASTS) through a Deep Sea Forum small grant award.

Author information

Authors and Affiliations



A.J.J. conceived the experiment, designed the sampling equipment and was awarded the analytical costs. A.J.J. and S.B.P. performed the sampling at sea. S.B.P identified species, and T.M. performed the laboratory analysis under the supervision of Z.Z. and A.J.J., T.M. and T.F. performed the statistical analyses and the manuscript was written by A.J.J., T.M., S.B.P. and Z.Z.

Corresponding author

Correspondence to Alan J. Jamieson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information

Supplementary Tables 1–4 (PDF 145 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamieson, A., Malkocs, T., Piertney, S. et al. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol 1, 0051 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing