Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change upends selection on ornamentation in a wild bird

Abstract

Secondary sexual traits have high heritabilities and are exposed to strong, environmentally sensitive selection, and so are expected to evolve rapidly in response to sustained environmental change. We examine the eco-evolutionary dynamics of ornament expression in a long-term study population of collared flycatchers, Ficedula albicollis, in which forehead patch size, which positively influences male reproductive success, declined markedly over 34 years. Annual fitness selection on forehead patch size switched from positive to negative during the study, a reversal that is accounted for by rising spring temperatures at the breeding site: highly ornamented males were selectively favoured following cold breeding seasons but selected against following warm breeding seasons. An ‘individual animal model’ describes a decline in the genetic values of breeding males during the study, which simulations showed was unlikely to result from drift alone. These results are thus consistent with adaptive evolution of a sexually selected trait in response to climate change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Male collared flycatcher with white forehead patch clearly displayed.
Figure 2: Annual estimates of phenotypic expression, selection and genetic value for forehead patch size (FPS) in a breeding population of male collared flycatchers.
Figure 3: Relationship between annual fitness selection gradients on forehead patch size (FPS) and spring (May–June) temperature at the breeding site the previous year.

References

  1. Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).

    Article  Google Scholar 

  2. Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).

    Article  CAS  Google Scholar 

  3. Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    Article  Google Scholar 

  4. Gienapp, P. & Merilä, J. Disentangling plastic and genetic changes in body mass of Siberian jays. J. Evol. Biol. 27, 1849–1858 (2014).

    Article  CAS  Google Scholar 

  5. Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325, 464–467 (2009).

    Article  CAS  Google Scholar 

  6. Balanyá, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. & Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775 (2006).

    Article  Google Scholar 

  7. Bradshaw, W. E. & Holzapfel, C. M. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl Acad. Sci. USA 98, 14509–14511 (2001).

    Article  CAS  Google Scholar 

  8. Hill, W. G. Understanding and using quantitative genetic variation. Phil. Trans. R. Soc. B 365, 73–85 (2010).

    Article  Google Scholar 

  9. Henderson, C. R. Best linear unbiased estimation and prediction under a selection model. Biometrics 31, 423–447 (1975).

    Article  CAS  Google Scholar 

  10. Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C. & Kruuk, L. E. B. The misuse of BLUP in ecology and evolution. Am. Nat. 175, 116–125 (2010).

    Article  Google Scholar 

  11. van Benthem, K. J. et al. Disentangling evolutionary, plastic and demographic processes underlying trait dynamics: a review of four frameworks. Meth. Ecol. Evol. http://dx.doi.org/10.1111/2041-210x.12627 (2016).

  12. Postma, E. Implications of the difference between true and predicted breeding values for the study of natural selection and micro-evolution. J. Evol. Biol. 19, 309–320 (2006).

    Article  CAS  Google Scholar 

  13. Kingsolver, J. G. & Pfennig, D. W . Patterns and power of phenotypic selection in nature. BioScience 57, 561–571 (2007).

    Article  Google Scholar 

  14. Prokuda, A. Y. & Roff, D. A. The quantitative genetics of sexually selected traits, preferred traits and preference: a review and analysis of the data. J. Evol. Biol. 27, 2283–2296 (2014).

    Article  CAS  Google Scholar 

  15. Kusmierski, R., Borgia, G., Uy, A. & Crozier, R. H. Labile evolution of display traits in bowerbirds indicates reduced effects of phylogenetic constraint. Phil. Trans. R. Soc. Lond. B 264, 307–313 (1997).

    CAS  Google Scholar 

  16. Omland, K. E. & Lanyon, S. M. Reconstructing plumage evolution in orioles (Icterus): repeated convergence and reversal in patterns. Evolution 54, 2119–2133 (2000).

    Article  CAS  Google Scholar 

  17. Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).

    Article  CAS  Google Scholar 

  18. Zuk, M., Rotenberry, J. T. & Tinghitella, R. M. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2, 521–524 (2006).

    Article  Google Scholar 

  19. Pigeon, G., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Intense selective hunting leads to artificial evolution in horn size. Evol. Appl. 9, 521–530 (2016).

    Article  Google Scholar 

  20. Svensson, E. I. & Gosden, T. P. Contemporary evolution of secondary sexual traits in the wild. Funct. Ecol. 21, 422–433 (2007).

    Article  Google Scholar 

  21. Wilson, A. J. & Poissant, J. in Encyclopedia of Evolutionary Biology (ed. Kliman, R. ) 361–371 (Academic Press, 2016).

    Book  Google Scholar 

  22. Pärt, T. & Qvarnström, A. Badge size in collared flycatchers predicts outcome of male competition over territories. Anim. Behav. 54, 893–899 (1997).

    Article  Google Scholar 

  23. Sheldon, B. C., Merilä, J., Qvarnström, A., Gustafsson, L. & Ellegren, H. Paternal genetic contribution to offspring condition predicted by size of male secondary sexual character. Phil. Trans. R. Soc Lond. B 264, 297–302 (1997).

    Google Scholar 

  24. Hegyi, G., Török, J., Tóth, L., Garamszegi, L. Z. & Rosivall, B. Rapid temporal change in the expression and age-related information content of a sexually selected trait. J. Evol. Biol. 19, 228–238 (2006).

    Article  CAS  Google Scholar 

  25. Garant, D., Sheldon, B. C. & Gustafsson, L. Climatic and temporal effects on the expression of secondary sexual characters: genetic and environmental components. Evolution 58, 634–644 (2004).

    Article  Google Scholar 

  26. Evans, S. R., Gustafsson, L. & Sheldon, B. C. Divergent patterns of age-dependence in ornamental and reproductive traits in the collared flycatcher. Evolution 65, 1623–1636 (2011).

    Article  Google Scholar 

  27. Qvarnström, A., Brommer, J. E. & Gustafsson, L. Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nature 441, 84–86 (2006).

    Article  Google Scholar 

  28. Qvarnström, A. Experimentally increased badge size increases male competition and reduces male parental care in the collared flycatcher. Proc. R. Soc. Lond. B 264, 1225–1231 (1997).

    Article  Google Scholar 

  29. Sætre, G.-P. et al. A sexually selected character displacement in flycatchers reinforces premating isolation. Nature 387, 589–592 (1997).

    Article  Google Scholar 

  30. Sætre, G.-P., Post, E. & Král, M. Can environmental fluctuation prevent competitive exclusion in sympatric flycatchers? Proc. R. Soc. Lond. B 266, 1247–1251 (1999).

    Article  Google Scholar 

  31. Ottersen, G. et al. Ecological effects of the North Atlantic Oscillation. Oecologia 128, 1–14 (2001).

    Article  Google Scholar 

  32. Sorensen, D., Fernando, R. & Gianola, D. Inferring the trajectory of genetic variance in the course of artificial selection. Genet. Res. 77, 83–94 (2001).

    Article  CAS  Google Scholar 

  33. Robinson, M. R., Pilkington, J. G., Clutton-Brock, T. H., Pemberton, J. M. & Kruuk, L. E. B. Environmental heterogeneity generates fluctuating selection on a secondary sexual trait. Curr. Biol. 18, 751–757 (2008).

    Article  CAS  Google Scholar 

  34. Birkhead, T. Stormy outlook for long-term ecology studies. Nature 514, 405 (2014).

    Article  CAS  Google Scholar 

  35. Gustafsson, L., Qvarnström, A. & Sheldon, B. C. Trade-offs between life-history traits and a secondary sexual character in male collared flycatchers. Nature 375, 311–313 (1995).

    Article  CAS  Google Scholar 

  36. Svensson, L. Identification Guide to European Passerines 4th edn (Svensson, 1994).

    Google Scholar 

  37. Cramp, S. & Perrins, C. M. The Birds of the Western Palearctic Vol. 7 (Oxford Univ. Press, 1993).

    Google Scholar 

  38. R v.3.3.1 (R Foundation for Statistical Computing, 2016).

  39. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and Nonlinear Mixed Effects Models R package version 3.1-128 (2015); http://CRAN.R-project.org/package=nlme

  40. Wolf, J. B. & Wade, M. J. On the assignment of fitness to parents and offspring: Whose fitness is it and when does it matter? J. Evol. Biol. 14, 347–356 (2001).

    Article  Google Scholar 

  41. Arnold, S. J. & Wade, M. J. On the measurement of natural and sexual selection: Theory. Evolution 38, 709–719 (1984).

    Article  Google Scholar 

  42. Sheldon, B. C. & Ellegren, H. Sexual selection resulting from extrapair paternity in collared flycatchers. Anim. Behav. 57, 285–298 (1999).

    Article  CAS  Google Scholar 

  43. Charmantier, A. & Réale, D. How do misassigned paternities affect the estimation of heritability in the wild? Mol. Ecol. 14, 2839–2850 (2005).

    Article  CAS  Google Scholar 

  44. Morrissey, M. B. & Wilson, A. J. Pedantics: an R package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing. Mol. Ecol. Res. 10, 711–719 (2010).

    Article  Google Scholar 

  45. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  46. Gianola, D. & Rosa, G. J. M. One hundred years of statistical developments in animal breeding. Annu. Rev. Anim. Biosci. 3, 19–56 (2015).

    Article  Google Scholar 

  47. Evans, S. R. & Gustafsson, L. Data from: Climate change upends selection on ornamentation in a wild bird. Dryad Digital Repository http://doi.org/10.5061/dryad.038q1 (2017).

Download references

Acknowledgements

We are indebted to the numerous people who contributed to data collection during the study, J. Hadfield and E. McFarlane for assistance with analyses, and to T. Bonnet, E. Cole, E. Postma and B. Sheldon for discussion and advice. The long-term study was funded by a succession of grants from the Swedish Research Council; S.R.E. was funded by grants from the Swedish Research Council (to L.G.) and Zoologiska Stiftelsen.

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived jointly by the authors. L.G. secured all funding for the fieldwork and was responsible for collating data. S.R.E. conducted all analyses and drafted the manuscript.

Corresponding author

Correspondence to Simon R. Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2 (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, S., Gustafsson, L. Climate change upends selection on ornamentation in a wild bird. Nat Ecol Evol 1, 0039 (2017). https://doi.org/10.1038/s41559-016-0039

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing