Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

How accurate is accurate enough for measuring sea-level rise and variability

Abstract

Sea-level measurements from radar satellite altimetry have reached a high level of accuracy and precision, which enables detection of global mean sea-level rise and attribution of most of the rate of rise to greenhouse gas emissions. This achievement is far beyond the original objectives of satellite altimetry missions. However, recent research shows that there is still room for improving the performance of satellite altimetry. Reduced uncertainties would enable regionalization of the detection and attribution of the anthropogenic signal in sea-level rise and provide new observational constraints on the water–energy cycle response to greenhouse gas emissions by improving the estimate of the ocean heat uptake and the Earth energy imbalance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sea-level changes.
Fig. 2: Sea-level trend uncertainties.
Fig. 3: Partitioning of GMSL trend uncertainty sources.
Fig. 4: EEI from satellite altimetry and space gravimetry data compared with CERES observations.

Similar content being viewed by others

References

  1. Legeais, J.-F. et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 10, 281–301 (2018).

    Article  Google Scholar 

  2. Ablain, M. et al. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth Syst. Sci. Data 11, 1189–1202 (2019).

    Article  Google Scholar 

  3. BIPM International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM) 3rd edn (Joint Committee for Guides in Metrology, 2012); https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1

  4. Palca, J. Ocean satellites: TOPEX launch comes closer. Nature 322, 9 (1986).

    Article  Google Scholar 

  5. Benveniste, J. & Bonnefond, P. Preface: 25 years of progress in radar altimetry. Adv. Space Res. https://doi.org/10.1016/j.asr.2021.01.020 (2021).

  6. Stammer, D. & Cazenave, A. Satellite Altimetry over Oceans and Land Surfaces (CRC, 2017).

  7. Lambeck, K. Understanding ocean dynamics. Nature 373, 474–475 (1995).

    Article  CAS  Google Scholar 

  8. Fu, L.-L. & Cazenave, A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications (Academic Press, 2001).

  9. Stammer, D. Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations. J. Geophys. Res. Oceans 102, 20987–21009 (1997).

    Article  Google Scholar 

  10. Cazenave, A. et al. Estimating ENSO influence on the global mean sea level, 1993–2010. Mar. Geod. 35, 82–97 (2012).

    Article  Google Scholar 

  11. Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. https://doi.org/10.1029/2012GL053055 (2012).

  12. Fasullo, J. T., Boening, C., Landerer, F. W. & Nerem, R. S. Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett. https://doi.org/10.1002/grl.50834 (2013).

  13. Hamlington, B. D., Frederikse, T., Nerem, R. S., Fasullo, J. T. & Adhikari, S. Investigating the acceleration of regional sea level rise during the satellite altimeter era. Geophys. Res. Lett. 47, e2019GL086528 (2020).

    Article  Google Scholar 

  14. Cazenave, A. Sea level and volcanoes. Nature 438, 35–36 (2005).

    Article  CAS  Google Scholar 

  15. Church, J. A., White, N. J. & Arblaster, J. M. Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438, 74–77 (2005).

    Article  CAS  Google Scholar 

  16. Grinsted, A., Moore, J. C. & Jevrejeva, S. Observational evidence for volcanic impact on sea level and the global water cycle. Proc. Natl Acad. Sci. USA 104, 19730–19734 (2007).

    Article  CAS  Google Scholar 

  17. Cazenave, A. et al. The rate of sea-level rise. Nat. Clim. Change 4, 358–361 (2014).

    Article  Google Scholar 

  18. WCRP Global Sea Level Budget Group.Global sea-level budget 1993–present. Earth Syst. Sci. Data 10, 1551–1590 (2018).

    Article  Google Scholar 

  19. Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020).

    Article  CAS  Google Scholar 

  20. Llovel, W., Willis, J. K., Landerer, F. W. & Fukumori, I. Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Clim. Change 4, 1031–1035 (2014).

    Article  Google Scholar 

  21. Chen, X. et al. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Change 7, 492–495 (2017).

    Article  Google Scholar 

  22. Horwath, M. et al. Global sea-level budget and ocean-mass budget, with focus on advanced data products and uncertainty characterisation. Earth Syst. Sci. Data 14, 411–447 (2022).

    Article  Google Scholar 

  23. Roemmich, D. et al. The Argo program: observing the global ocean with profiling floats. Oceanography 22, 34–43 (2009).

    Article  Google Scholar 

  24. Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).

    Article  Google Scholar 

  25. Wong, A. P. S. et al. Argo data 1999–2019: two million temperature–salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci. 7, 700 (2020).

    Article  Google Scholar 

  26. Roemmich, D. & Gilson, J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr. 82, 81–100 (2009).

    Article  Google Scholar 

  27. Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  28. Wouters, B. et al. GRACE, time-varying gravity, Earth system dynamics and climate change. Rep. Prog. Phys. 77, 116801 (2014).

    Article  CAS  Google Scholar 

  29. Blazquez, A. et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets. Geophys. J. Int. 215, 415–430 (2018).

    Article  Google Scholar 

  30. Uebbing, B., Kusche, J., Rietbroek, R. & Landerer, F. W. Processing choices affect ocean mass estimates from GRACE. J. Geophys. Res. Oceans 124, 1029–1044 (2019).

    Article  Google Scholar 

  31. Landerer, F. W. et al. Extending the global mass change data record: Grace follow-on instrument and science data performance. Geophys. Res. Lett. https://doi.org/10.1029/2020GL088306 (2020).

  32. Leuliette, E. W. & Willis, J. K. Balancing the sea level budget. Oceanography https://doi.org/10.5670/oceanog.2011.32 (2011).

  33. Amin, H., Bagherbandi, M. & Sjöberg, L. Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005–2016. Adv. Space Res. 65, 1922–1940 (2020).

    Article  Google Scholar 

  34. Barnoud, A. et al. Contributions of altimetry and Argo to non-closure of the global mean sea level budget since 2016. Geophys. Res. Lett. 48, e2021GL092824 (2021).

    Article  Google Scholar 

  35. Beckley, B. D., Callahan, P. S., Hancock III, D. W., Mitchum, G. T. & Ray, R. D. On the ‘cal-mode’ correction to TOPEX satellite altimetry and its effect on the global mean sea level time series. J. Geophys. Res. Oceans 122, 8371–8384 (2017).

    Article  Google Scholar 

  36. Dieng, H. B., Cazenave, A., Meyssignac, B. & Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 44, 3744–3751 (2017).

    Article  Google Scholar 

  37. Watson, C. S. et al. Unabated global mean sea-level rise over the satellite altimeter era. Nat. Clim. Change 5, 565–568 (2015).

    Article  Google Scholar 

  38. Chenal, J., Meyssignac, B., Ribes, A. & Guillaume-Castel, R. Observational constraint on the climate sensitivity to atmospheric CO2 concentrations changes derived from the 1971–2017 global energy budget. J. Clim. 35, 4469–4483 (2022).

    Article  Google Scholar 

  39. Meyssignac, B., Chenal, J., Loeb, N., Guillaume-Castel, R. & Ribes, A. Time-variations of the climate feedback parameter λ are associated with the Pacific Decadal Oscillation. Commun. Earth Environ. 4, 241 (2023).

  40. Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.2063 (2013).

  41. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  42. Wunsch, C. Global ocean integrals and means, with trend implications. Annu. Rev. Mar. Sci. 8, 1–33 (2016).

    Article  Google Scholar 

  43. Donlon, C. J. et al. The Copernicus Sentinel-6 mission: enhanced continuity of satellite sea level measurements from space. Remote Sens. Environ. 258, 112395 (2021).

    Article  Google Scholar 

  44. Donlon, C. et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 120, 37–57 (2012).

    Article  Google Scholar 

  45. Henry, O. et al. Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the Jason-1 operating period. J. Geod. 88, 351–361 (2014).

    Article  Google Scholar 

  46. Scharffenberg, M. G. & Stammer, D. Time–space sampling-related uncertainties of altimetric global mean sea level estimates. J. Geophys. Res. Oceans 124, 7743–7755 (2019).

    Article  Google Scholar 

  47. Ballarotta, M. et al. On the resolutions of ocean altimetry maps. Ocean Sci. 15, 1091–1109 (2019).

    Article  Google Scholar 

  48. Rieu, P. et al. Exploiting the Sentinel-3 tandem phase dataset and azimuth oversampling to better characterize the sensitivity of SAR altimeter sea surface height to long ocean waves. Adv. Space Res. 67, 253–265 (2021).

    Article  Google Scholar 

  49. Guérou, A. et al. Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty. Ocean Sci. 19, 431–451 (2023).

    Article  Google Scholar 

  50. Prandi, P. et al. Local sea level trends, accelerations and uncertainties over 1993–2019. Sci. Data 8, 1 (2021).

    Article  Google Scholar 

  51. Slangen, A. B. A. et al. Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Change 6, 701–705 (2016).

    Article  Google Scholar 

  52. Nerem, R. S. et al. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl Acad. Sci. USA 115, 2022–2025 (2018).

    Article  CAS  Google Scholar 

  53. Nerem, R. S., Frederikse, T. & Hamlington, B. D. Extrapolating empirical models of satellite-observed global mean sea level to estimate future sea level change. Earths Future 10, e2021EF002290 (2022).

    Article  Google Scholar 

  54. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  55. Desbruyères, D. G., Purkey, S. G., McDonagh, E. L., Johnson, G. C. & King, B. A. Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys. Res. Lett. 43, 10356–10365 (2016).

    Article  Google Scholar 

  56. Forget, G. & Ponte, R. M. The partition of regional sea level variability. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2015.06.002 (2015).

  57. Meyssignac, B. et al. Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993–2011. Surv. Geophys. https://doi.org/10.1007/s10712-016-9383-1 (2016).

  58. Hsu, C.-W. & Velicogna, I. Detection of sea level fingerprints derived from GRACE gravity data. Geophys. Res. Lett. 44, 8953–8961 (2017).

    Article  Google Scholar 

  59. Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J. & Dahle, C. Revisiting the contemporary sea-level budget on global and regional scales. Proc. Natl Acad. Sci. USA 113, 1504–1509 (2016).

    Article  CAS  Google Scholar 

  60. Royston, S. et al. Can we resolve the basin-scale sea level trend budget from GRACE ocean mass? J. Geophys. Res. Oceans 125, e2019JC015535 (2020).

    Article  Google Scholar 

  61. Fasullo, J. T. & Nerem, R. S. Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proc. Natl Acad. Sci. USA 115, 12944–12949 (2018).

    Article  CAS  Google Scholar 

  62. Bilbao, R. A. F., Gregory, J. M. & Bouttes, N. Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs. Clim. Dyn. 45, 2647–2666 (2015).

    Article  Google Scholar 

  63. Meyssignac, B. et al. Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00432 (2019).

  64. Hakuba, M. Z., Frederikse, T. & Landerer, F. W. Earth’s energy imbalance from the ocean perspective (2005–2019). Geophys. Res. Lett. 48, e2021GL093624 (2021).

    Article  Google Scholar 

  65. Marti, F. et al. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry. Earth Syst. Sci. Data 14, 229–249 (2022).

    Article  Google Scholar 

  66. von Schuckmann, K. et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Change 6, 138–144 (2016).

    Article  Google Scholar 

  67. Loeb, N. G. et al. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 data product. J. Clim. 31, 895–918 (2018).

    Article  Google Scholar 

  68. Loeb, N. G. et al. Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett. 48, e2021GL093047 (2021).

    Article  Google Scholar 

  69. Raghuraman, S. P., Paynter, D. & Ramaswamy, V. Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance. Nat. Commun. 12, 4577 (2021).

    Article  CAS  Google Scholar 

  70. von Schuckmann, K. et al. Heat stored in the Earth system: where does the energy go? Earth Syst. Sci. Data 12, 2013–2041 (2020).

    Article  Google Scholar 

  71. Loeb, N. G., Thorsen, T. J., Norris, J. R., Wang, H. & Su, W. Changes in Earth’s energy budget during and after the ‘pause’ in global warming: an observational perspective. Climate 6, 62 (2018).

    Article  Google Scholar 

  72. Desai, S. Surface Water and Ocean Topography Mission (SWOT) Project Science Requirements Document Technical Report JPL D-61923, Rev. B (JPL, 2018); https://swot.jpl.nasa.gov/system/documents/files/2176_2176_D-61923_SRD_Rev_B_20181113.pdf

  73. Esteban-Fernandez, D. SWOT Mission Performance and Error Budget Technical Report JPL D-79084, Rev. A (NASA/JPL, 2017); https://swot.jpl.nasa.gov/system/documents/files/2178_2178_SWOT_D-79084_v10Y_FINAL_REVA__06082017.pdf

  74. Schröder, M. et al. The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses. Earth Syst. Sci. Data 10, 1093–1117 (2018).

    Article  Google Scholar 

  75. Barnoud, A. et al. Reducing the uncertainty in the satellite altimetry estimates of global mean sea level trends using highly stable water vapor climate data records. J. Geophys. Res. Oceans 128, e2022JC019378 (2023).

    Article  Google Scholar 

  76. Mertikas, S. P. et al. Performance evaluation of the CDN1 altimetry Cal/Val transponder to internal and external constituents of uncertainty. Adv. Space Res. 70, 2458–2479 (2022).

    Article  CAS  Google Scholar 

  77. Gibert, F. et al. A trihedral corner reflector for radar altimeter calibration. IEEE Trans. Geosci. Remote Sens. 61, 5101408 (2023).

    Article  Google Scholar 

  78. Fernandes, M. J., Lázaro, C. & Vieira, T. On the role of the troposphere in satellite altimetry. Remote Sens. Environ. 252, 112149 (2021).

    Article  Google Scholar 

  79. Vieira, T., Fernandes, M. J. & Lázaro, C. An enhanced retrieval of the wet tropospheric correction for Sentinel-3 using dynamic inputs from era5. J. Geod. 96, 28 (2022).

    Article  Google Scholar 

  80. Kehm, A., Blossfeld, M., Konig, P. & Seitz, F. Future TRFs and GGOS—where to put the next SLR station? Adv. Geosci. 50, 17–25 (2019).

    Article  Google Scholar 

  81. Arnold, D., Montenbruck, O., Hackel, S. & Sosnica, K. Satellite laser ranging to low Earth orbiters: orbit and network validation. J. Geod. 93, 2315–2334 (2019).

    Article  Google Scholar 

  82. Otsubo, T. et al. Effective expansion of satellite laser ranging network to improve global geodetic parameters. Earth Planets Space 68, 65 (2016).

    Article  Google Scholar 

  83. Delva, P. et al. GENESIS: co-location of geodetic techniques in space. Earth Planets Space 75, 5 (2023).

    Article  Google Scholar 

  84. Llovel, W. et al. Global ocean freshening, ocean mass increase and global mean sea level rise over 2005–2015. Sci. Rep. 9, 17717 (2019).

    Article  Google Scholar 

  85. Munk, W. Ocean freshening, sea level rising. Science 300, 2041–2043 (2003).

    Article  Google Scholar 

  86. Mitrovica, J. X. et al. Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: resolving Munk’s enigma. Sci. Adv. 1, e1500679 (2015).

    Article  Google Scholar 

  87. Barnoud, A. et al. Revisiting the global mean ocean mass budget over 2005–2020. Ocean Sci. 19, 321–334 (2023).

    Article  Google Scholar 

  88. L’Ecuyer, T. S. et al. The observed state of the energy budget in the early twenty-first century. J. Clim. 28, 8319–8346 (2015).

    Article  Google Scholar 

  89. Rodell, M. et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 28, 8289–8318 (2015).

    Article  Google Scholar 

  90. Stephens, G. et al. The first 30 years of GEWEX. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-22-0061.1 (2022).

  91. Taburet, G., Mertz, F. & Legeais, J.-F. Product User Guide and Specification: Sea Level ECMWF Copernicus Report (CLS, 2021).

  92. Legeais, J.-F. et al. Copernicus sea level space observations: a basis for assessing mitigation and developing adaptation strategies to sea level rise. Front. Mar. 8, 704721 (2021).

    Article  Google Scholar 

  93. Peltier, W. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  CAS  Google Scholar 

  94. Spada, G. & Melini, D. SELEN4 (SELEN version 4.0): a Fortran program for solving the gravitationally and topographically self-consistent sea-level equation in glacial isostatic adjustment modeling. Geosci. Model Dev. 12, 5055–5075 (2019).

    Article  Google Scholar 

  95. Frederikse, T., Riva, R. E. M. & King, M. A. Ocean bottom deformation due to present-day mass redistribution and its impact on sea level observations. Geophys. Res. Lett. 44, 12306–12314 (2017).

    Article  Google Scholar 

  96. Lickley, M. J., Hay, C. C., Tamisiea, M. E. & Mitrovica, J. X. Bias in estimates of global mean sea level change inferred from satellite altimetry. J. Clim. 31, 5263–5271 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European Space Agency (ESA) Analysis of the Uncertainty of the Stability of the Altimeter Measurement of Sea Level Rise (ASELSU) study contract no. 4000135959/21/NL/AD. It was also partially supported by the ESA Climate Change Initiative sea-level budget closure (phase 2) project. This work was supported by the Centre National d’Etudes Spatiales, with a focus on Sentinel 6/MF.

Author information

Authors and Affiliations

Authors

Contributions

B.M. led and conducted the study and wrote most of the manuscript. M.A., A.G. and P.P. participated in the writing of the Methods. M.A., A.G., P.P., A. Barnoud, A. Blazquez, S.F. and V.R. contributed to the data processing and figure generation. All authors contributed to scientific and technical discussions and read and approved the content of the manuscript.

Corresponding author

Correspondence to Benoit Meyssignac.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Mohammad Bagherbandi, Abdul-Lateef Balogun and Florian Seitz for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyssignac, B., Ablain, M., Guérou, A. et al. How accurate is accurate enough for measuring sea-level rise and variability. Nat. Clim. Chang. 13, 796–803 (2023). https://doi.org/10.1038/s41558-023-01735-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01735-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing