Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Incorporating dead material in ecosystem assessments and projections

When considering how ecosystems will react to climate change the importance of dead matter has been largely overlooked. Here we discuss why dead material is integral to ecosystem form and function, and why its persistence or degradation must be explicitly included in models considering ecosystem futures in a rapidly changing world.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Concept image of varied impacts of different climate stressors.


  1. Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).

  2. Turetsky, M. R. et al. Nat. Geosci. 8, 11–14 (2014).

    Article  Google Scholar 

  3. Wenger, S. J., Subalusky, A. L. & Freeman, M. C. Food Webs 18, e00106 (2019).

    Article  Google Scholar 

  4. Tomatsuri, M. & Kon, K. Hydrobiologia 790, 225–232 (2017).

    Article  Google Scholar 

  5. Henry, L. A. & Roberts, J. M. in Marine Animal Forests (eds Rossi, S. et al.) 235–256 (Springer, 2017).

  6. Walton, M. E. M. et al. Sci. Total Environ. 820, 153191 (2022).

    Article  CAS  Google Scholar 

  7. Wolfe, K., Kenyon, T. M. & Mumby, P. J. Coral Reefs 40, 1769–1806 (2021).

    Article  Google Scholar 

  8. Kim, H. et al. Glob. Change Biol. 28, 6180–6193 (2022).

  9. Jackson, R. B. et al. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article  Google Scholar 

  10. Pan, Y. et al. Science 333, 988–993 (2011).

    Article  CAS  Google Scholar 

  11. Hedges, J. I., Keil, R. G. & Benner, R. Org. Geochem. 27, 195–212 (1997).

    Article  CAS  Google Scholar 

  12. Lønborg, C. et al. Front. Mar. Sci. 7, 466 (2020).

    Article  Google Scholar 

  13. Harden, J. W. et al. Glob. Change Biol. 6, 174–184 (2000).

  14. Davidson, E. A. & Janssens, I. A. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  15. Hugelius, G. et al. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    Article  CAS  Google Scholar 

  16. Hennige, S. J. et al. Front. Mar. Sci. (2020).

    Article  Google Scholar 

  17. Wolfram, U. et al. Sci. Rep. 12, 8052 (2022).

    Article  CAS  Google Scholar 

  18. Roberts, J. M., Wheeler, A. J. & Freiwald, A. Science 312, 543–547 (2006).

    Article  CAS  Google Scholar 

  19. Mortensen, P. B. & Fosså, J. H. Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. In Proc. 10th Int. Coral Reef Symp. 1849–1868 (ICRS, 2006).

  20. Maier, S. R. et al. Deep Sea Res. I 175, 103574 (2021)..

Download references

Author information

Authors and Affiliations



All authors contributed to manuscript conceptualization. K.A.B. led initial draft and figure preparation, and all authors contributed to manuscript writing, editing and reviewing. U.W. and S.H. contributed equally.

Corresponding author

Correspondence to Sebastian J. Hennige.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barnhill, K.A., Roberts, J.M., Myers-Smith, I. et al. Incorporating dead material in ecosystem assessments and projections. Nat. Clim. Chang. (2022).

Download citation

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing