Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A climate risk index for marine life

Abstract

Climate change is impacting virtually all marine life. Adaptation strategies will require a robust understanding of the risks to species and ecosystems and how those propagate to human societies. We develop a unified and spatially explicit index to comprehensively evaluate the climate risks to marine life. Under high emissions (SSP5-8.5), almost 90% of ~25,000 species are at high or critical risk, with species at risk across 85% of their native distributions. One tenth of the ocean contains ecosystems where the aggregated climate risk, endemism and extinction threat of their constituent species are high. Climate change poses the greatest risk for exploited species in low-income countries with a high dependence on fisheries. Mitigating emissions (SSP1-2.6) reduces the risk for virtually all species (98.2%), enhances ecosystem stability and disproportionately benefits food-insecure populations in low-income countries. Our climate risk assessment can help prioritize vulnerable species and ecosystems for climate-adapted marine conservation and fisheries management efforts.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Spatially explicit assessment of climate vulnerability and risk for species and ecosystems globally.
Fig. 2: Climate vulnerability and risk for species.
Fig. 3: Climate risk patterns across marine ecosystems.
Fig. 4: Climate risk and conservation planning.
Fig. 5: Climate risk for fisheries among maritime countries.
Fig. 6: Climate risk and socio-economic equity.

Data availability

All datasets used in this paper are described and archived at the publicly available sources listed in Supplementary Table 2. Species vulnerability scores are available through the Dryad digital repository114.

Code availability

Statistical analyses were conducted using the R statistical computing platform115, and the code is available upon request to the corresponding author.

References

  1. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  Google Scholar 

  2. Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).

    Article  Google Scholar 

  3. O’Hara, C. C., Frazier, M. & Halpern, B. S. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 372, 84–87 (2021).

    Article  Google Scholar 

  4. Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

    Article  CAS  Google Scholar 

  5. Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    Article  CAS  Google Scholar 

  6. Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    Article  CAS  Google Scholar 

  7. Lotze, H. K., Bryndum-Buchholz, A. & Boyce, D. G. in The Impacts of Climate Change: Comprehensive Study of the Physical, Societal and Political Issues (ed. Letcher, T.) 205–231 (Elsevier, 2021); https://doi.org/10.1016/B978-0-12-822373-4.00017-3

  8. Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).

    Article  CAS  Google Scholar 

  9. Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, 2235 (2019).

    Article  Google Scholar 

  10. Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267 (2020).

    Article  Google Scholar 

  11. Barange, M. et al. (eds) Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options FAO Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).

  12. Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the northeast U.S. continental shelf. PLoS ONE 11, 1–654 (2016).

    Article  CAS  Google Scholar 

  13. Boyce, D. G., Fuller, S., Karbowski, C., Schleit, K. & Worm, B. Leading or lagging: how well are climate change considerations being incorporated into Canadian fisheries management? Can. J. Fish. Aquat. Sci. 78, 1120–1129 (2021).

    Article  Google Scholar 

  14. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  15. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).

    Article  Google Scholar 

  16. de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species' vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).

    Article  Google Scholar 

  17. Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).

    Article  Google Scholar 

  18. Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article  Google Scholar 

  19. Albouy, C. et al. Global vulnerability of marine mammals to global warming. 1–12 (2020).

  20. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article  CAS  Google Scholar 

  21. Kesner-Reyes, K. et al. AquaMaps: algorithm and data sources for aquatic organisms. In FishBase v.04/2012 (eds. Froese, R. & Pauly, D.) www.fishbase.org (2016).

  22. Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    Article  CAS  Google Scholar 

  23. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article  CAS  Google Scholar 

  24. Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).

    Article  Google Scholar 

  25. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).

  26. IPCC Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J. et al.) (Cambridge Univ. Press, 2001).

  27. The IUCN Red List of Threatened Species v.2021-1 (IUCN, 2021); https://www.iucnredlist.org

  28. Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article  CAS  Google Scholar 

  29. Rogers, A. et al. Critical Habitats and Biodiversity: Inventory, Thresholds and Governance. Sci. Rep. 10, 548 (World Resources Institute, 2020).

  30. Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article  CAS  Google Scholar 

  31. Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    Article  CAS  Google Scholar 

  32. Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate‐induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).

    Article  Google Scholar 

  33. Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Res. 41, 83–116 (2016).

    Article  Google Scholar 

  34. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    Article  CAS  Google Scholar 

  35. Moilanen, A., Kujala, H. & Mikkonen, N. A practical method for evaluating spatial biodiversity offset scenarios based on spatial conservation prioritization outputs. Methods Ecol. Evol. 11, 794–803 (2020).

    Article  Google Scholar 

  36. Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl Acad. Sci. USA 103, 19374–19379 (2006).

    Article  CAS  Google Scholar 

  37. Williams, P. H., Gaston, K. J. & Humphries, C. J. Mapping biodiversity value worldwide: combining higher-taxon richness from different groups. Proc. R. Soc. Lond. B 264, 141–148 (1997).

    Article  Google Scholar 

  38. Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).

    Article  Google Scholar 

  39. Robiou Du Pont, Y. et al. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7, 38–43 (2017).

    Article  Google Scholar 

  40. Payne, N. L. et al. Fish heating tolerance scales similarly across individual physiology and populations. Commun. Biol. 4, 264 (2021).

    Article  Google Scholar 

  41. First Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2021).

  42. Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article  Google Scholar 

  43. Bryndum‐Buchholz, A., Tittensor, D. P. & Lotze, H. K. The status of climate change adaptation in fisheries management: policy, legislation and implementation. Fish Fish. https://doi.org/10.1111/faf.12586 (2021).

  44. Maureaud, A. et al. Are we ready to track climate‐driven shifts in marine species across international boundaries? A global survey of scientific bottom trawl data. Glob. Change Biol. 27, 220–236 (2021).

    Article  Google Scholar 

  45. Boyce, D. G. et al. Operationalizing climate risk for fisheries in a global warming hotspot. Preprint at: https://doi.org/10.1101/2022.07.19.500650 (2022).

  46. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  Google Scholar 

  47. Olden, J. D., Hogan, Z. S. & Vander Zanden, M. J. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Glob. Ecol. Biogeogr. 16, 694–701 (2007).

    Article  Google Scholar 

  48. Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    Article  CAS  Google Scholar 

  49. Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature https://doi.org/10.1038/s41586-019-1132-4 (2019).

  50. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  51. Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).

    Article  Google Scholar 

  52. Rosset, V. & Oertli, B. Freshwater biodiversity under climate warming pressure: identifying the winners and losers in temperate standing waterbodies. Biol. Conserv. 144, 2311–2319 (2011).

    Article  Google Scholar 

  53. Peters, R. L. The greenhouse effect and nature reserves. Biosciences 35, 707–717 (1985).

    Article  Google Scholar 

  54. Garcia, R. A. et al. Matching species traits to projected threats and opportunities from climate change. J. Biogeogr. 41, 724–735 (2014).

    Article  Google Scholar 

  55. IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2012).

  56. Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    Article  CAS  Google Scholar 

  57. Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).

    Article  CAS  Google Scholar 

  58. Worm, B. & Duffy, J. E. Biodiversity, productivity, and stability in real food webs. Trends Ecol. Evol. 18, 628–632 (2003).

    Article  Google Scholar 

  59. Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    Article  CAS  Google Scholar 

  60. Ottersen, G., Hjermann, D. O. & Stenseth, N. C. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish. Oceanogr. 15, 230–243 (2006).

    Article  Google Scholar 

  61. Le Bris, A. et al. Climate vulnerability and resilience in the most valuable North American fishery. Proc. Natl Acad. Sci. USA 115, 1831–1836 (2018).

    Article  Google Scholar 

  62. Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).

    Article  Google Scholar 

  63. Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Conserv. 236, 305–314 (2019).

    Article  Google Scholar 

  64. Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    Article  CAS  Google Scholar 

  65. Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C. & Ban, N. C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 7, 9569 (2017).

    Article  CAS  Google Scholar 

  66. MacKenzie, B. R. et al. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Change Biol. 20, 2484–2491 (2014).

    Article  Google Scholar 

  67. Shackell, N. L., Ricard, D. & Stortini, C. Thermal habitat index of many Northwest Atlantic temperate species stays neutral under warming projected for 2030 but changes radically by 2060. PLoS ONE 9 (2014).

  68. Boyce, D. G., Frank, K. T., Worm, B. & Leggett, W. C. Spatial patterns and predictors of trophic control across marine ecosystems. Ecol. Lett. 18, 1001–1011 (2015).

    Article  Google Scholar 

  69. Boyce, D. G., Frank, K. T. & Leggett, W. C. From mice to elephants: overturning the ‘one size fits all’ paradigm in marine plankton food chains. Ecol. Lett. 18, 504–515 (2015).

    Article  Google Scholar 

  70. Frank, K. T., Petrie, B., Shackell, N. L. & Choi, J. S. Reconciling differences in trophic control in mid-latitude marine ecosystems. Ecol. Lett. 9, 1096–1105 (2006).

    Article  Google Scholar 

  71. Frank, K. T., Petrie, B. & Shackell, N. L. The ups and downs of trophic control in continental shelf ecosystems. Trends Ecol. Evol. 22, 236–242 (2007).

    Article  Google Scholar 

  72. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1056 (2009).

    Article  CAS  Google Scholar 

  73. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  CAS  Google Scholar 

  74. Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    Article  CAS  Google Scholar 

  75. Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

    Article  Google Scholar 

  76. Boyce, D. G., Lewis, M. L. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    Article  CAS  Google Scholar 

  77. Burek, K. A., Gulland, F. M. D. & O’Hara, T. M. Effects of climate change on Arctic marine mammal health. Ecol. Appl. 18, S126–S134 (2008).

    Article  Google Scholar 

  78. Staude, I. R., Navarro, L. M. & Pereira, H. M. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).

    Article  Google Scholar 

  79. Moore, S. E. & Huntington, H. P. Arctic marine mammals and climate change: impacts and resilience. Ecol. Appl. 18, S157–S165 (2008).

    Article  Google Scholar 

  80. Kaschner, K., Watson, R., Trites, A. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).

    Article  Google Scholar 

  81. Gonzalez-Suarez, M., Gomez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 6 (2013).

    Article  Google Scholar 

  82. Rogan, J. E. & Lacher, T. E. in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-409548-9.10913-3

  83. Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    Article  CAS  Google Scholar 

  84. Chessman, B. C. Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol. Conserv. 160, 40–49 (2013).

    Article  Google Scholar 

  85. Davidson, A. D. D. et al. Drivers and hotspots of extinction risk in marine mammals. Proc. Natl Acad. Sci. USA 109, 3395–3400 (2012).

    Article  CAS  Google Scholar 

  86. Cheung, W. W. L., Pauly, D. & Sarmiento, J. L. How to make progress in projecting climate change impacts. ICES J. Mar. Sci. 70, 1069–1074 (2013).

    Article  Google Scholar 

  87. Fenchel, T. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14, 317–326 (1974).

    Article  Google Scholar 

  88. Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).

    Article  Google Scholar 

  89. Carilli, J., Donner, S. D. & Hartmann, A. C. Historical temperature variability affects coral response to heat stress. PLoS ONE 7, e34418 (2012).

    Article  CAS  Google Scholar 

  90. Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).

    Article  CAS  Google Scholar 

  91. Donner, S. D. & Carilli, J. Resilience of Central Pacific reefs subject to frequent heat stress and human disturbance. Sci. Rep. 9, 3484 (2019).

    Article  Google Scholar 

  92. Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range‐edge populations. Ecol. Evol. 5, 4315–4326 (2015).

    Article  Google Scholar 

  93. Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Modell. 221, 467–478 (2010).

    Article  Google Scholar 

  94. Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R. & Cheung, W. W. L. Modelling commercial fish distributions: prediction and assessment using different approaches. Ecol. Modell. 225, 133–145 (2012).

    Article  Google Scholar 

  95. Froese, R. & Pauly, D. FishBase v.02/2022 www.fishbase.org (2022).

  96. Palomares, M. L. D. & Pauly, D. SeaLifeBase v.11/2014 www.sealifebase.org (2022).

  97. van Buuren, S. Flexible Imputation of Missing Data (Chapman & Hall/CRC, 2012).

  98. Dahlke, F. T., Wohlrab, S., Butzin, M. & Portner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    Article  CAS  Google Scholar 

  99. Stortini, C. H., Shackell, N. L., Tyedmers, P. & Beazley, K. Assessing marine species vulnerability to projected warming on the Scotian Shelf, Canada. ICES J. Mar. Sci. 72, 1713–1743 (2015).

    Article  Google Scholar 

  100. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article  Google Scholar 

  101. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article  CAS  Google Scholar 

  102. Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, art41 (2012).

    Article  Google Scholar 

  103. Rao, T. R. A curve for all reasons. Resonance 5, 85–90 (2000).

    Article  Google Scholar 

  104. Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, 10 (2013).

    Article  Google Scholar 

  105. Lotze, H. K. et al. Ensemble projections of global ocean animal biomass with climate change. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900194116 (2019).

  106. Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    Article  Google Scholar 

  107. Oppenheimer, M., Little, C. M. & Cooke, R. M. Expert judgement and uncertainty quantification for climate change. Nat. Clim. Change 6, 445–451 (2016).

    Article  Google Scholar 

  108. Budescu, D. V., Por, H. H. & Broomell, S. B. Effective communication of uncertainty in the IPCC reports. Climatic Change 113, 181–200 (2012).

    Article  Google Scholar 

  109. Swart, R., Bernstein, L., Ha-Duong, M. & Petersen, A. Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC. Climatic Change 92, 1–29 (2009).

    Article  Google Scholar 

  110. NAFO Annual Fisheries Statistics Database (NAFO, 2021).

  111. Horton, T. et al. World Register of Marine Species (WoRMS) https://www.marinespecies.org (2020).

  112. Total Wealth per Capita, 1995 to 2014 (World Bank, 2022); https://ourworldindata.org/grapher/total-wealth-per-capita

  113. Depth of the Food Deficit in Kilocalories per Person per Day, 1992 to 2016 (World Bank, 2022); https://ourworldindata.org/grapher/depth-of-the-food-deficit

  114. Boyce, D. G. et al. A climate risk index for marine life. Dryad https://doi.org/10.5061/dryad.7wm37pvwr (2022).

  115. R Core Team R: A Language and Environment for Statistical Computing Version 4.0.4 (R Foundation for Statistical Computing, 2021).

Download references

Acknowledgements

Financial support to D.G.B. was provided by the Ocean Frontier Institute (Module G) and Oceans North. D.P.T. acknowledges support from the Jarislowsky Foundation and NSERC. S.H. acknowledges support from the National Environmental Research Council (grant no. NE/R015953/1) and from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 820989 (COMFORT). This research was enabled in part by support provided by ACENET (www.ace-net.ca) and Compute Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Contributions

D.G.B. conceived and designed the study with input from B.W., D.P.T. and N.L.S. C.G., S.H., K.K., K.K.-R., R.B.R. and P.S.-Y. provided the data. D.G.B. wrote the computer code with input from A.P. D.G.B. conducted the analyses. D.G.B., B.W. and D.P.T. drafted the manuscript. All authors reviewed the methods and edited subsequent drafts.

Corresponding author

Correspondence to Daniel G. Boyce.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Joseph Maina and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Data availability.

a) The pie chart displays the proportion of assessed species across kingdoms. Colours show the numbers of species within each animal phylum and shading within the bars shows the number of species in each taxonomic class. b) Spatial distribution in the number of assessed species. Colours depict the number of species assessed per 1 × 1° cell. The gray shaded area in the right margin shows the total number of species assessed along latitude. The red line and axis are the average species richness of all marine taxa by latitude reported in Tittensor et al.180.

Extended Data Fig. 2 General overview of the steps in estimating the climate vulnerability and risk for species and ecosystems.

Thick arrow and numbers denote the sequence of analyses used to estimate climate risk from the input data layers. Red depicts the sensitivity and quality-control analyses that were completed.

Extended Data Fig. 3 Correlations between climate indices used to calculate climate vulnerability and risk.

Colours and numbers are the correlations between climate indices calculated for each species. Colour shading and text are the direction and strength of the relationships: red are positive and blue negative correlations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–58, Tables 1–4 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boyce, D.G., Tittensor, D.P., Garilao, C. et al. A climate risk index for marine life. Nat. Clim. Chang. 12, 854–862 (2022). https://doi.org/10.1038/s41558-022-01437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01437-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing