Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transitional wave climate regions on continental and polar coasts in a warming world

Abstract

Wave climate is a primary driver of coastal risk, yet how climate change is altering wave climate is not fully understood. Here we identify transitional wave climate regions, coastlines with a future change in the occurrence frequency of a wave climate, with most of the regions located in south-western and eastern ocean basins. Analysis of the spatio-temporal changes in the atmosphere-driven major wave climates (the easterlies, southerlies and westerlies) under 2 emission scenarios for 2075–2099 and 2081–2099 shows increases in frequency from 5 to 20% for the easterly and southerly wave climates. The projected changes in these regions, in addition to sea-level rise and changes in storminess, can modify the general patterns of the prevailing wave climates and severely alter their coastal risks. Consequently, transitional wave climate regions should be recognized as areas of high coastal climate risk that require focus for adaptation in the near term.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of wave power in the ENSEMBLE projection.
Fig. 2: Comparison of mean wave direction in the ENSEMBLE projection.
Fig. 3: Analysis of wave climate area covered (%) in the ENSEMBLE projection.
Fig. 4: Transitional regions identified along continental coasts in the ENSEMBLE projection.
Fig. 5: Transitional regions along the Arctic coasts in the ENSEMBLE projection.
Fig. 6: Transitional regions along the Antarctic coasts in the ENSEMBLE projection.

Similar content being viewed by others

Data availability

The wave climate dataset downscaled from the CMIP5 experiments used in this study can be accessed at https://data.csiro.au/collection/csiro:13500 and http://search.diasjp.net/en/dataset/KU_wave_climate_projection_2022. All the data reported in the main text and supplementary information are available at https://doi.org/10.5281/zenodo.6482839.

Code availability

The figures were generated with MATLAB and Surfer (Golden Software). All the codes used in the data processing and visualization of the wave climates are available at https://doi.org/10.5281/zenodo.6482839. Other routines are available upon request from the corresponding author I.O.

References

  1. Toimil, A. et al. Climate change-driven coastal erosion modelling in temperate sandy beaches: methods and uncertainty treatment. Earth Sci. Rev. 202, 103110 (2020).

    Article  Google Scholar 

  2. Vousdoukas, M. I. et al. Sandy coastlines under threat of erosion. Nat. Clim. Change 10, 260–263 (2020).

    Article  Google Scholar 

  3. Ranasinghe, R. Assessing climate change impacts on open sandy coasts: a review. Earth Sci. Rev. 160, 320–332 (2016).

    Article  Google Scholar 

  4. Izaguirre, C., Losada, I. J., Camus, P., Vigh, J. L. & Stenek, V. Climate change risk to global port operations. Nat. Clim. Change 11, 14–20 (2021).

    Article  Google Scholar 

  5. Hemer, M. A., Fan, Y., Mori, N., Semedo, A. & Wang, X. L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Change 3, 471–476 (2013).

    Article  Google Scholar 

  6. Hemer, M. A., Wang, X. L., Weisse, R. & Swail, V. R. Advancing wind-waves climate science: the COWCLIP project. Bull. Am. Meteorol. Soc. 93, 791–796 (2012).

    Article  Google Scholar 

  7. Meucci, A., Young, I. R., Hemer, M., Kirezci, E. & Ranasinghe, R. Projected 21st century changes in extreme wind-wave events. Sci. Adv. 6, eaaz7295 (2020).

    Article  Google Scholar 

  8. Morim, J. et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Change 9, 711–718 (2019).

    Article  Google Scholar 

  9. Morim, J., Hemer, M., Cartwright, N., Strauss, D. & Andutta, F. On the concordance of 21st century wind-wave climate projections. Glob. Planet. Change 167, 160–171 (2018).

    Article  Google Scholar 

  10. Reguero, B. G., Losada, I. J. & Méndez, F. J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 10, 205 (2019).

    Article  Google Scholar 

  11. Lemos, G. et al. Mid-twenty-first century global wave climate projections: results from a dynamic CMIP5 based ensemble. Glob. Planet. Change 172, 69–87 (2019).

    Article  Google Scholar 

  12. Semedo, A. et al. Projection of global wave climate change toward the end of the twenty-first century. J. Clim. 26, 8269–8288 (2012).

    Article  Google Scholar 

  13. Mori, N., Shimura, T., Yasuda, T. & Mase, H. Multi-model climate projections of ocean surface variables under different climate scenarios—Future change of waves, sea level and wind. Ocean Eng. 71, 122–129 (2013).

    Article  Google Scholar 

  14. Shimura, T., Mori, N. & Hemer, M. A. Projection of tropical cyclone-generated extreme wave climate based on CMIP5 multi-model ensemble in the Western North Pacific. Clim. Dyn. 49, 1449–1462 (2017).

    Article  Google Scholar 

  15. Mentaschi, L., Vousdoukas, M. I., Voukouvalas, E., Dosio, A. & Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 44, 2416–2426 (2017).

    Article  Google Scholar 

  16. Melet, A. et al. Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans 125, e2020JC016078 (2020).

    Article  Google Scholar 

  17. Melet, A., Meyssignac, B., Almar, R. & Le Cozannet, G. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Change 8, 234–239 (2018).

    Article  Google Scholar 

  18. Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).

    Article  Google Scholar 

  19. Kusumoto, B. et al. Global distribution of coral diversity: biodiversity knowledge gradients related to spatial resolution. Ecol. Res. 35, 315–326 (2020).

    Article  Google Scholar 

  20. Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350, 3–20 (2007).

    Article  Google Scholar 

  21. Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Article  Google Scholar 

  22. Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 055002 (2018).

    Article  Google Scholar 

  23. Ribó, M., Goodwin, I. D., O’Brien, P. & Mortlock, T. Shelf sand supply determined by glacial-age sea-level modes, submerged coastlines and wave climate. Sci. Rep. 10, 462 (2020).

    Article  Google Scholar 

  24. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Article  CAS  Google Scholar 

  25. Lobeto, H., Menendez, M. & Losada, I. J. Future behavior of wind wave extremes due to climate change. Sci. Rep. 11, 7869 (2021).

    Article  CAS  Google Scholar 

  26. Morim, J. et al. Global-scale changes to extreme ocean wave events due to anthropogenic warming. Environ. Res. Lett. 16, 074056 (2021).

    Article  Google Scholar 

  27. Echevarria, E. R., Hemer, M. A. & Holbrook, N. J. Seasonal variability of the global spectral wind wave climate. J. Geophys. Res. Oceans 124, 2924–2939 (2019).

    Article  Google Scholar 

  28. Jiang, H. Wave climate patterns from spatial tracking of global long-term ocean wave spectra. J. Clim. 33, 3381–3393 (2020).

    Article  Google Scholar 

  29. Jiang, H. & Mu, L. Wave climate from spectra and its connections with local and remote wind climate. J. Phys. Oceanogr. 49, 543–559 (2019).

    Article  Google Scholar 

  30. Odériz, I. et al. Natural variability and warming signals in global ocean wave climates. Geophys. Res. Lett. 48, e2021GL093622 (2021).

    Article  Google Scholar 

  31. Camus, P., Mendez, F. J., Medina, R. & Cofiño, A. S. Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coast. Eng. 58, 453–462 (2011).

    Article  Google Scholar 

  32. IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (WMO, 2019).

  33. Hemer, M., Trenham, C., Durrant, T. & Greenslade, D. CAWCR Global Wind-wave 21st Century Climate Projections (CSIRO, 2015).

  34. Shimura, T., Pringle, W. J., Mori, N., Miyashita, T. & Yoshida, K. Seamless projections of global storm surge and ocean waves under a warming climate. Geophys. Res. Lett. 49, e2021GL097427 (2022).

    Article  Google Scholar 

  35. Screen, J. A., Bracegirdle, T. J. & Simmonds, I. Polar climate change as manifest in atmospheric circulation. Curr. Clim. Change Rep. 4, 383–395 (2018).

    Article  CAS  Google Scholar 

  36. Miller, R. L., Schmidt, G. A. & Shindell, D. T. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006323 (2006).

  37. Nazarenko, L. et al. Future climate change under RCP emission scenarios with GISS ModelE2. J. Adv. Model. Earth Syst. 7, 244–267 (2015).

    Article  Google Scholar 

  38. Cherchi, A. et al. The response of subtropical highs to climate change. Curr. Clim. Change Rep. 4, 371–382 (2018).

    Article  Google Scholar 

  39. Lim, E.-P. et al. The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophys. Res. Lett. 43, 7160–7167 (2016).

    Article  Google Scholar 

  40. He, C., Wu, B., Zou, L. & Zhou, T. Responses of the summertime subtropical anticyclones to global warming. J. Clim. 30, 6465–6479 (2017).

    Article  Google Scholar 

  41. Lu, J., Deser, C. & Reichler, T. Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett. https://doi.org/10.1029/2008GL036076 (2009).

  42. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  43. Costoya, X., deCastro, M., Santos, F., Sousa, M. C. & Gómez-Gesteira, M. Projections of wind energy resources in the Caribbean for the 21st century. Energy 178, 356–367 (2019).

    Article  Google Scholar 

  44. Seth, A. et al. Monsoon responses to climate changes—connecting past, present and future. Curr. Clim. Change Rep. 5, 63–79 (2019).

    Article  Google Scholar 

  45. Lucas, C., Timbal, B. & Nguyen, H. The expanding tropics: a critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev. Clim. Change 5, 89–112 (2014).

    Article  Google Scholar 

  46. Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).

    Article  CAS  Google Scholar 

  47. Choi, J., Lu, J., Son, S.-W., Frierson, D. M. W. & Yoon, J.-H. Uncertainty in future projections of the North Pacific subtropical high and its implication for California winter precipitation change. J. Geophys. Res. Atmos. 121, 795–806 (2016).

    Article  Google Scholar 

  48. Chen, G., Lu, J. & Frierson, D. M. W. Phase speed spectra and the latitude of surface westerlies: interannual variability and global warming trend. J. Clim. 21, 5942–5959 (2008).

    Article  Google Scholar 

  49. Liu, Q., Babanin, A. V., Zieger, S., Young, I. R. & Guan, C. Wind and wave climate in the Arctic Ocean as observed by altimeters. J. Clim. 29, 7957–7975 (2016).

    Article  Google Scholar 

  50. Rogers, W. E., Posey, P. G., Li, L. & Allard, R. Forecasting and Hindcasting Waves in and near the Marginal Ice Zone: Wave Modeling and the ONR “Sea State FieldExperiment (Naval Research Laboratory, 2018).

  51. Thomson, J. & Rogers, W. E. Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett. 41, 3136–3140 (2014).

    Article  Google Scholar 

  52. Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383–400 (2012).

    Article  CAS  Google Scholar 

  53. Ebinger, C. K. & Zambetakis, E. The geopolitics of Arctic melt. Int. Aff. 85, 1215–1232 (2009).

    Article  Google Scholar 

  54. Cazenave, A. & Le Cozannet, G. Sea level rise and its coastal impacts. Earths Future 2, 15–34 (2014).

    Article  Google Scholar 

  55. Lemos, G., Semedo, A., Hemer, M., Menendez, M. & Miranda, P. M. A. Remote climate change propagation across the oceans—the directional swell signature. Environ. Res. Lett. 16, 064080 (2021).

    Article  Google Scholar 

  56. Babanin, A. V. et al. Waves and swells in high wind and extreme fetches. Front. Mar. Sci. 6, 361 (2019).

    Article  Google Scholar 

  57. Tolman, H. User Manual and System Documentation of WAVEWATCH III, Version 3.14 Technical Note (NOAA/NWS/NCEP/MMAB, 2009).

  58. Tolman, H. et al. User manual and system documentation of WAVEWATCH III (R) version 5.16. (2016).

  59. Ardhuin, F. et al. Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J. Phys. Oceanogr. 40, 1917–1941 (2010).

    Article  Google Scholar 

  60. Mizuta, R., Adachi, Y., Yukimoto, S. & Kusunoki, S. Estimation of the Future Distribution of Sea Surface Temperature and Sea Ice Using the CMIP3 Multi-model Ensemble Mean Technical Report (Meteorological Research Institute, 2008).

  61. Odériz, I., et al. Dataset for transitional wave climate regions on continental and polar coasts in a warming world (version 1). Zenodo https://doi.org/10.5281/zenodo.6482839 (2022).

Download references

Acknowledgements

I.O. thanks everyone in N. Mori’s laboratory for their warm welcome in Japan. This work was made possible thanks to the financial support of DPRI research funds, JSPS KAKENHI (nos. 19K15099 and 19H00782) and the Integrated Research Program for Advancing Climate Models (TOUGOU Program: no. JPMXD0717935498) supported by MEXT (N.M.), and the Fondo CONACYT-SENER Sustentabilidad Energética grant no. FSE-2014-06-249795 through the Centro Mexicano de Innovación en Energías del Océano (CEMIE-Océano) (R.S.).

Author information

Authors and Affiliations

Authors

Contributions

I.O., N.M., T.S. and A.W. conceived the study. I.O. led the data collection and formal analysis and wrote the original draft of the manuscript. N.M. and T.S. provided the wave dataset downscaled from MRI-AGCM. N.M. supervised the study. N.M. and R.S. acquired the resources and funding. I.O., N.M., T.S., A.W., R.S. and T.R.M. discussed the results and reviewed and edited the manuscript.

Corresponding author

Correspondence to I. Odériz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Angel Amores, Sofia Caires and Gil Lemos for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Conceptual explanation of the method applied for a) historical conditions, b) projected scenarios RCP using the centroids calculated in (a).

Supplementary information

Supplementary Information

Supplementary Text 1–3, Figs. 1–28 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odériz, I., Mori, N., Shimura, T. et al. Transitional wave climate regions on continental and polar coasts in a warming world. Nat. Clim. Chang. 12, 662–671 (2022). https://doi.org/10.1038/s41558-022-01389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01389-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing