Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Constraining the increased frequency of global precipitation extremes under warming

Abstract

A key indicator of climate change is the greater frequency and intensity of precipitation extremes across much of the globe. In fact, several studies have already documented increased regional precipitation extremes over recent decades. Future projections of these changes, however, vary widely across climate models. Using two generations of models, here we demonstrate an emergent relationship between the future increased occurrence of precipitation extremes aggregated over the globe and the observable change in their frequency over recent decades. This relationship is robust in constraining frequency changes in precipitation extremes in two separate ensembles and under two future emissions pathways (reducing intermodel spread by 20–40%). Moreover, this relationship is also apparent when the analysis is limited to near-global land regions. These constraints suggest that historical global precipitation extremes will occur roughly 32 ± 8% more often than at present by 2100 under a medium-emissions pathway (and 55 ± 13% more often under high emissions).

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Simulated future change in precipitation characteristics.
Fig. 2: Historical change in extreme precipitation occurrence.
Fig. 3: Maps of the simulated historical and future change in FP≥99.
Fig. 4: EC on the future change in FP≥99.
Fig. 5: Constraints on FP≥99 under two emissions scenarios.
Fig. 6: Constraints on other characteristics of future extreme precipitation.

Data availability

The data that support the findings of this study are publicly available. The CMIP5 and CMIP6 output is available from the Earth System Grid Federation (https://esgf-node.llnl.gov/projects/). The observational precipitation data are available from http://www.gloh2o.org/mswep/, https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f8555_9260_4736_9502, https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f6973_9398_8796_3040, https://data.chc.ucsb.edu/products/CHIRPS-2.0/ and https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. Source data are provided with this paper.

Code availability

The code used in the analyses described in this study is available in a GitHub repository: https://github.com/cwthackeray/T22_NCC (ref. 73). More information about the code can be obtained from the corresponding author upon reasonable request.

References

  1. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    CAS  Google Scholar 

  2. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  3. Held, I. M. & Soden, B. J. Robust responses of the hydrologic cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  4. Wu, P., Christidis, N. & Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nat. Clim. Change 3, 807–810 (2013).

    Article  Google Scholar 

  5. Pendergrass, A. G. & Hartmann, D. L. The atmospheric energy constraint on global-mean precipitation change. J. Clim. 27, 757–768 (2014).

    Article  Google Scholar 

  6. Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change 119, 345–357 (2013).

    Article  Google Scholar 

  7. Pendergrass, A. G., Lehner, F., Sanderson, B. M. & Xu, Y. Does extreme precipitation intensity depend on the emissions scenario? Geophys. Res. Lett. 42, 8767–8774 (2015).

    Article  Google Scholar 

  8. Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

    Article  Google Scholar 

  9. Pendergrass, A. G. & Hartmann, D. L. Changes in the distribution of rain frequency and intensity in response to global warming. J. Clim. 27, 8372–8383 (2014).

    Article  Google Scholar 

  10. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  11. O’Gorman, P. A. Precipitation extremes under climate change. Curr. Clim. Change Rep. 1, 49–59 (2015).

    Article  Google Scholar 

  12. Pendergrass, A. G. What precipitation is extreme? Science 360, 1072–1073 (2018).

    CAS  Article  Google Scholar 

  13. Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9, 16063 (2019).

    CAS  Article  Google Scholar 

  14. Scoccimarro, E. & Gualdi, S. Heavy daily precipitation events in the CMIP6 worst-case scenario: projected twenty-first-century changes. J. Clim. 33, 7631–7642 (2020).

    Article  Google Scholar 

  15. Scoccimarro, E., Gualdi, S., Bellucci, A., Zampieri, M. & Navarra, A. Heavy precipitation events in a warmer climate: results from CMIP5 models. J. Clim. 26, 7902–7911 (2013).

    Article  Google Scholar 

  16. Thackeray, C. W., DeAngelis, A. M., Hall, A., Swain, D. L. & Qu, X. On the connection between global hydrologic sensitivity and regional wet extremes. Geophys. Res. Lett. 45, 11343–11351 (2018).

    Google Scholar 

  17. Bador, M. et al. Assessing the robustness of future extreme precipitation intensification in the CMIP5 ensemble. J. Clim. 31, 6505–6525 (2018).

    Article  Google Scholar 

  18. Sun, Y., Solomon, S., Dai, A. & Portmann, R. W. How often will it rain? J. Clim. 20, 4801–4818 (2007).

    Article  Google Scholar 

  19. Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    CAS  Article  Google Scholar 

  20. Lau, W. K., Wu, H. & Kim, K. A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett. 40, 3163–3169 (2013).

    Article  Google Scholar 

  21. Giorgi, F. et al. Higher hydroclimatic intensity with global warming. J. Clim. 24, 5309–5324 (2011).

    Article  Google Scholar 

  22. Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article  Google Scholar 

  23. Williamson, M. S. et al. Emergent constraints on climate sensitivities. Rev. Mod. Phys. 93, 025004 (2021).

    CAS  Article  Google Scholar 

  24. Thackeray, C. W., Hall, A., Zelinka, M. D. & Fletcher, C. G. Assessing prior emergent constraints on surface albedo feedback in CMIP6. J. Clim. 34, 3889–3905 (2021).

    Article  Google Scholar 

  25. DeAngelis, A. M., Qu, X., Zelinka, M. D. & Hall, A. An observational radiative constraint on hydrologic cycle intensification. Nature 528, 249–253 (2015).

    CAS  Article  Google Scholar 

  26. Su, H. et al. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nat. Commun. 8, 15771 (2017).

    CAS  Article  Google Scholar 

  27. Watanabe, M., Kamae, Y., Shiogama, H., DeAngelis, A. M. & Suzuki, K. Low clouds link equilibrium climate sensitivity to hydrological sensitivity. Nat. Clim. Change 8, 901–906 (2018).

    CAS  Article  Google Scholar 

  28. O’Gorman, P. A. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 5, 697–700 (2012).

    Article  CAS  Google Scholar 

  29. Borodina, A., Fischer, E. M. & Knutti, R. Models are likely to underestimate increase in heavy rainfall in the extratropical regions with high rainfall intensity. Geophys. Res. Lett. 44, 7401–7409 (2017).

    Article  Google Scholar 

  30. Jiménez-de-la-Cuesta, D. & Mauritsen, T. Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming. Nat. Geosci. 12, 902–905 (2019).

    Article  CAS  Google Scholar 

  31. Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).

    CAS  Article  Google Scholar 

  32. Min, S. K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    CAS  Article  Google Scholar 

  33. Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  34. Fischer, E. M. & Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 41, 547–554 (2014).

    Article  Google Scholar 

  35. Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change 6, 986–991 (2016).

    Article  Google Scholar 

  36. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

    Article  Google Scholar 

  37. Donat, M. G., Angélil, O. & Ukkola, A. M. Intensification of precipitation extremes in the world’s humid and water-limited regions. Environ. Res. Lett. 14, 065003 (2019).

    CAS  Article  Google Scholar 

  38. Contractor, S., Donat, M. G. & Alexander, L. V. Changes in observed daily precipitation over global land areas since 1950. J. Clim. 34, 3–19 (2021).

    Article  Google Scholar 

  39. Madakumbura, G. D., Thackeray, C. W., Norris, J., Goldenson, N. & Hall, A. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun. 12, 3944 (2021).

    CAS  Article  Google Scholar 

  40. Chinita, M. J., Richardson, M., Teixeira, J. & Miranda, P. M. A. Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environ. Res. Lett. 16, 074035 (2021).

    Article  Google Scholar 

  41. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  42. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  43. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  44. Herold, N., Behrangi, A. & Alexander, L. V. Large uncertainties in observed daily precipitation extremes over land. J. Geophys. Res. 122, 668–681 (2017).

    Article  Google Scholar 

  45. Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    Article  Google Scholar 

  46. Bador, M., Alexander, L. V., Contractor, S. & Roca, R. Diverse estimates of annual maxima daily precipitation in 22 state-of-the-art quasi-global land observation datasets. Environ. Res. Lett. 15, 035005 (2020).

    Article  Google Scholar 

  47. Pendergrass, A. G. The global-mean precipitation response to CO2-induced warming in CMIP6 models. Geophys. Res. Lett. 47, e2020GL089964 (2020).

    CAS  Article  Google Scholar 

  48. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article  Google Scholar 

  49. Beck, H. E. et al. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).

    Article  Google Scholar 

  50. Alexander, L. V. Global observed long-term changes in temperature and precipitation extremes: a review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 11, 4–16 (2016).

    Article  Google Scholar 

  51. Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article  Google Scholar 

  52. Goldenson, N., Thackeray, C. W., Hall, A. D., Swain, D. L. & Berg, N. Using large ensembles to identify regions of systematic biases in moderate-to-heavy daily precipitation. Geophys. Res. Lett. 48, e2020GL092026 (2021).

    Article  Google Scholar 

  53. Contractor, S. et al. Rainfall Estimates on a Gridded Network (REGEN)—a global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci. 24, 919–943 (2020).

    Article  Google Scholar 

  54. Bowman, K. W., Cressie, N., Qu, X. & Hall, A. A hierarchical statistical framework for emergent constraints: application to snow-albedo feedback. Geophys. Res. Lett. 45, 13,050–13,059 (2018).

    Google Scholar 

  55. Thackeray, C. W. & Hall, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Clim. Change 9, 972–978 (2019).

    Article  Google Scholar 

  56. Boé, J., Hall, A. & Qu, X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci. 2, 341–343 (2009).

    Article  CAS  Google Scholar 

  57. Hoffman, F. M. et al. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. J. Geophys. Res. Biogeosci. 119, 141–162 (2014).

    CAS  Article  Google Scholar 

  58. Pendergrass, A. G. et al. Nonlinear response of extreme precipitation to warming in CESM1. Geophys. Res. Lett. 46, 10551–10560 (2019).

    Article  Google Scholar 

  59. Williamson, D. B. & Sansom, P. G. How are emergent constraints quantifying uncertainty and what do they leave behind? Bull. Am. Meteorol. Soc. 100, 2571–2588 (2019).

    Article  Google Scholar 

  60. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  61. Tokarska, K. B. et al. Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nat. Geosci. 12, 964–971 (2019).

    CAS  Article  Google Scholar 

  62. Huber, M. & Knutti, R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci. 7, 651–656 (2014).

    CAS  Article  Google Scholar 

  63. Herold, N., Alexander, L. V., Donat, M. G., Contractor, S. & Becker, A. How much does it rain over land? Geophys. Res. Lett. 43, 341–348 (2016).

    Article  Google Scholar 

  64. Gibson, P. B., Waliser, D. E., Lee, H., Tian, B. & Massoud, E. Climate model evaluation in the presence of observational uncertainty: precipitation indices over the contiguous United States. J. Hydrometeorol. 20, 1339–1357 (2019).

    Article  Google Scholar 

  65. Roca, R. et al. FROGS: a daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data 11, 1017–1035 (2019).

    Article  Google Scholar 

  66. Donat, M. G. et al. Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets. J. Clim. 27, 5019–5035 (2014).

    Article  Google Scholar 

  67. Beck, H. E. et al. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 21, 6201–6217 (2017).

    CAS  Article  Google Scholar 

  68. Beck, H. E. et al. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 23, 207–224 (2019).

    Article  Google Scholar 

  69. Alexander, L. V. et al. On the use of indices to study extreme precipitation on sub-daily and daily timescales. Environ. Res. Lett. 14, 125008 (2019).

    Article  Google Scholar 

  70. Chen, M. et al. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 113, D04110 (2008).

    Google Scholar 

  71. Funk, C. et al. The Climate Hazards Infrared Precipitation with Stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    Article  Google Scholar 

  72. Musselman, K. N., Addor, N., Vano, J. A. & Molotch, N. P. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01014-9 (2021).

  73. Thackeray, C. W. cwthackeray/T22_NCC: Thackeray22 (V1.0). Zenodo https://doi.org/10.5281/zenodo.6288035 (2022).

Download references

Acknowledgements

We acknowledge funding from the National Science Foundation grant no. 1543268, titled ‘Reducing Uncertainty Surrounding Climate Change Using Emergent Constraints’ (C.W.T. and A.H.), and the Regional and Global Model Analysis Program for the Office of Science of the US Department of Energy through the Program for Climate Model Diagnosis and Intercomparison (C.W.T., A.H., J.N. and D.C.). We also thank the World Climate Research Programme’s Working Group on Coupled Modeling and the individual modelling groups for their roles in making CMIP data available. All data used here are publicly available.

Author information

Authors and Affiliations

Authors

Contributions

C.W.T. conceived of the study and designed the analyses. C.W.T. conducted the analyses and wrote the manuscript, while A.H., J.N. and D.C. provided comments and feedback.

Corresponding author

Correspondence to Chad W. Thackeray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Lu Dong, Nidhi Nishant, Peili Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Future simulated change in extreme precipitation in CMIP5 and CMIP6.

(Top) Ensemble mean change in precipitation greater than or equal to the 99th percentile per degree of global warming from CMIP5 and CMIP6 along with the difference between ensembles (CMIP6 minus CMIP5). (Bottom) Standard deviation of extreme precipitation change per degree of global warming in CMIP5 and CMIP6, along with the difference between ensembles.

Extended Data Fig. 2 Relationship between simulated historical warming rates and historical changes in extreme precipitation occurrence.

Scatterplot showing the simulated historical warming trend (K/decade) from each CMIP5 and CMIP6 model along with their respective historical FP≥99 change (%/decade). Dashed lines are derived from ordinary least squares regression.

Extended Data Fig. 3 Same as Fig. 3 but showing the CMIP5 ensemble means rather than that of CMIP6.

Stippling denotes grid cells where (~75% or more) of models agree on the sign of change.

Extended Data Fig. 4 Spatial characteristics of historical extreme precipitation frequency change derived from MSWEP2.

Note that the scale is different from Fig. 3a and ED Fig. 3a. This is because we only have one “realization” for observations whereas the ensemble means from CMIP5 and CMIP6, which have been smoothed across 20+ models. Individual GCMs exhibit magnitudes of change that are more comparable to MSWEP2 (not shown).

Extended Data Fig. 5 Sensitivity of the CMIP6 emergent relationship to the number of realizations used to calculate historical and future FP≥99 change.

(a) Scatterplot of the emergent relationship defined in three different ways: using all available simulations from 23 CMIP6 models as in Figs. 4a and 5a (shown in navy), using only the first realization (r1) from the same model subset (shown in purple), and using only the mean of the frequency change from the first three realizations (r1, r2, r3) from 17 CMIP6 GCMs (shown in light blue). The ensemble size decreases in the latter case because several GCMs only provide one realization. The historical metric is calculated over the 1980–2017 period for all cases. If we were to extend the historical period to 2020 (as was done for CMIP5 in Fig. 4), the r value for the r1 case increases to 0.75. (b) Raw and constrained 95% prediction intervals of future FP≥99 change derived using the Bowman et al. (2018) framework for each of the ways to construct the emergent relationship. The wider portion of each bar denotes the 68% prediction interval.

Extended Data Fig. 6 Impact of future warming trends on emergent relationship slope.

(a) Same as Fig. 4a, but with each GCM colored by their equilibrium climate sensitivity (as provided by Zelinka et al. 2020) rather than their CMIP ensemble. (b) Same as Fig. 4a, but the future change metric (y-axis) is normalized by warming (units of %/K).

Extended Data Fig. 7 Map of land areas considered after masking by REGEN product data quality.

Determined using a threshold for the kriging error term used to interpolate point data to gridded averages (Contractor et al. 2020). This mask is derived using REGEN-LONG data at the mid-point of our observational time period (1980–2016). REGEN-LONG is more restrictive than REGEN-ALL.

Extended Data Fig. 8 Relationship between the future change in extreme precipitation frequency and magnitude.

Scatterplot of simulated changes in frequency (%) and magnitude (mm/day) of extreme precipitation events (≥99th percentile). Only showing the results for RCP8.5 (CMIP5) and SSP5-8.5 (CMIP6) here.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–4.

Source data

Source Data Fig. 1

Data for the global hydrological sensitivity box plots shown in Fig. 1a.

Source Data Fig. 2

Time series of the historical frequency of precipitation exceeding the 99th percentile.

Source Data Fig. 4

Model data for EC scatterplots.

Source Data Fig. 5

Model data for EC scatterplots.

Source Data Fig. 6

Model data for EC scatterplots.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thackeray, C.W., Hall, A., Norris, J. et al. Constraining the increased frequency of global precipitation extremes under warming. Nat. Clim. Chang. 12, 441–448 (2022). https://doi.org/10.1038/s41558-022-01329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01329-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing