Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drivers of exceptional coastal warming in the northeastern United States


The northeastern United States (NEUS) and the adjacent Northwest Atlantic Shelf (NWS) have emerged as warming hotspots, but the connection between them remains unexplored. Here we use gridded observational and reanalysis datasets to show that the twentieth-century surface air temperature increase along the coastal NEUS is exceptional on the continental and hemispheric scale and is induced by a combination of two factors: the sea surface temperature (SST) increase in the NWS associated with a weakening Atlantic Meridional Overturning Circulation (AMOC), and atmospheric circulation changes associated with a more persistent positive North Atlantic Oscillation. These connections are important because AMOC slowdown and NWS warming are projected to continue. A survey of climate model simulations indicates that realistic SST representation at high spatial resolution might be a minimum requirement to capture the observed pattern of coastal warming, suggesting that prior projection-based assessments may not have captured key features in this populous region.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Linear trends in surface air temperature between 1902 and 2018.
Fig. 2: Connection between SST and regional SAT.
Fig. 3: Co-variability between SST and 500 hPa geopotential heights.
Fig. 4: Regressions of atmospheric field anomalies onto the SST-Z500-MCA2 time series.
Fig. 5: Ensemble mean SAT trends in CMIP6 experiments and CESM-LE.

Data availability

All underlying raw observational and model data are publically available online. For temperature data, see for CRU TS v4 data; for Berkeley Earth data; for nClimGrid; and for 20CRv3 data. For SST data, see for HadISST; and for ERSST V5.

CMIP6 model output is available from the Earth System Grid Federation (ESGF; CESM-LENS data are available from the UCAR website ( The AMOC index time series are available at and

Code availability

The code used in the analyses described in this study is available in a GitHub repository: More information about the code can be obtained from the corresponding author upon reasonable request.


  1. 1.

    Mascioli, N. R., Previdi, M., Fiore, A. M. & Ting, M. Timing and seasonality of the United States ‘warming hole’. Environ. Res. Lett. 12, 034008 (2017).

    Article  Google Scholar 

  2. 2.

    Vose, R., Easterling, D. R., Kunkel, K. & Wehner, M. in Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program (eds Wuebbles, D. J. et al.) 267–300 (U.S. Global Change Research Program, 2017).

  3. 3.

    Mooney, C., Muyskens, J. & Van Houten, C. Dangerous new hot zones are spreading around the world. The Washington Post (13 August 2019).

  4. 4.

    Karmalkar, A. V. & Bradley, R. S. Consequences of global warming of 1.5 °C and 2 °C for regional temperature and precipitation changes in the contiguous United States. PLoS ONE 12, e0168697 (2017).

    Article  CAS  Google Scholar 

  5. 5.

    Horton, R. et al. in Climate Change Impacts in the United States: The Third National Climate Assessment (eds Melillo, J. M. et al.) 371–395 (US Global Change Research Program, 2014).

  6. 6.

    Mills, K. E. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26, 191–195 (2013).

    Article  Google Scholar 

  7. 7.

    Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Chen, Z. et al. Long‐term SST variability on the Northwest Atlantic continental shelf and slope. Geophys. Res. Lett. 47, e2019GL085455 (2020).

    Google Scholar 

  9. 9.

    Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).

    Article  Google Scholar 

  10. 10.

    Alexander, M. A., Shin, S. I., Scott, J. D., Curchitser, E. & Stock, C. The response of the Northwest Atlantic Ocean to climate change. J. Clim. 33, 405–428 (2020).

    Article  Google Scholar 

  11. 11.

    Zielinski, G. A. & Keim, B. D. New England Weather, New England Climate (UPNE, 2005).

  12. 12.

    Hurrell, J. W. & Deser, C. North Atlantic climate variability: the role of the North Atlantic Oscillation. J. Mar. Syst. 79, 231–244 (2010).

    Article  Google Scholar 

  13. 13.

    Battisti, D. S., Vimont, D. J. & Kirtman, B. P. 100 years of progress in understanding the dynamics of coupled atmosphere-ocean variability. Meteorol. Monogr. 59, 8.1–8.57 (2019).

    Article  Google Scholar 

  14. 14.

    Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Zhang, R. et al. A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).

    Article  Google Scholar 

  16. 16.

    Delworth, T. L. & Mann, M. E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 16, 661–676 (2000).

    Article  Google Scholar 

  17. 17.

    Delworth, T. L. et al. The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Clim. 30, 3789–3805 (2017).

    Article  Google Scholar 

  18. 18.

    Sutton, R. T. & Hodson, D. L. Atlantic Ocean forcing of North American and European summer climate. Science 309, 115–118 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    Chen, K., Gawarkiewicz, G. G., Lentz, S. J. & Bane, J. M. Diagnosing the warming of the Northeastern US Coastal Ocean in 2012: a linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans 119, 218–227 (2014).

    Article  Google Scholar 

  20. 20.

    Chen, K. & Kwon, Y. O. Does Pacific variability influence the Northwest Atlantic Shelf temperature? J. Geophys. Res. Oceans 123, 4110–4131 (2018).

    Article  Google Scholar 

  21. 21.

    Shearman, R. K. & Lentz, S. J. Long-term sea surface temperature variability along the US East Coast. J. Phys. Oceanogr. 40, 1004–1017 (2010).

    Article  Google Scholar 

  22. 22.

    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article  Google Scholar 

  24. 24.

    Dima, M. & Lohmann, G. Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J. Clim. 23, 5–16 (2010).

    Article  Google Scholar 

  25. 25.

    Wu, L. et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2, 161–166 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Yang, H. et al. Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett. 47, e2019GL085868 (2020).

    Google Scholar 

  27. 27.

    Neto, A. G., Langan, J. A., & Palter, J. B. Changes in the Gulf Stream preceded rapid warming of the Northwest Atlantic Shelf. Commun. Earth Environ. 2, 74 (2021).

    Article  Google Scholar 

  28. 28.

    Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans 121, 4928–4945 (2016).

    Article  Google Scholar 

  29. 29.

    Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701 (2005).

    Article  CAS  Google Scholar 

  30. 30.

    Tamarin-Brodsky, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S. P. & Small, R. J. Influence of the Gulf Stream on the troposphere. Nature 452, 206–209 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Yin, J. & Goddard, P. B. Oceanic control of sea level rise patterns along the East Coast of the United States. Geophys. Res. Lett. 40, 5514–5520 (2013).

    Article  Google Scholar 

  33. 33.

    Gulev, S. K., Latif, M., Keenlyside, N., Park, W. & Koltermann, K. P. North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499, 464–467 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Deser, C., Alexander, M. A., Xie, S. P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2010).

    Article  Google Scholar 

  35. 35.

    Bradbury, J. A., Keim, B. D. & Wake, C. P. US East Coast trough indices at 500 hPa and New England winter climate variability. J. Clim. 15, 3509–3517 (2002).

    Article  Google Scholar 

  36. 36.

    Woollings, T. et al. Contrasting interannual and multidecadal NAO variability. Clim. Dyn. 45, 539–556 (2015).

    Article  Google Scholar 

  37. 37.

    Liu, W., Fedorov, A. V., Xie, S. P. & Hu, S. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).

    Article  Google Scholar 

  38. 38.

    Karnauskas, K. B., Zhang, L. & Amaya, D. J. The atmospheric response to North Atlantic SST trends, 1870–2019. Geophys. Res. Lett. 48, e2020GL090677 (2020).

    Google Scholar 

  39. 39.

    Gastineau, G. & Frankignoul, C. Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Clim. 28, 1396–1416 (2015).

    Article  Google Scholar 

  40. 40.

    Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779 (2012).

    Article  Google Scholar 

  41. 41.

    Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).

    Article  Google Scholar 

  42. 42.

    Wang, X., Li, J., Sun, C. & Liu, T. NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations. J. Geophys. Res. Atmos. 122, 4202–4227 (2017).

    Article  Google Scholar 

  43. 43.

    Kim, W. M., Yeager, S., Chang, P. & Danabasoglu, G. Low-frequency North Atlantic climate variability in the Community Earth System Model large ensemble. J. Clim. 31, 787–813 (2018).

    Article  Google Scholar 

  44. 44.

    Folland, C. K. et al. The summer North Atlantic Oscillation: past, present, and future. J. Clim. 22, 1082–1103 (2009).

    Article  Google Scholar 

  45. 45.

    Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).

    Article  Google Scholar 

  46. 46.

    Roberts, C. D., Jackson, L. & McNeall, D. Is the 2004–2012 reduction of the Atlantic Meridional Overturning Circulation significant? Geophys. Res. Lett. 41, 3204–3210 (2014).

    Article  Google Scholar 

  47. 47.

    Jackson, L. C., Peterson, K. A., Roberts, C. D. & Wood, R. A. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nat. Geosci. 9, 518–522 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Caesar, L., McCarthy, G. D., Thornalley, G. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).

    CAS  Article  Google Scholar 

  49. 49.

    Roberts, M. J. et al. Sensitivity of the Atlantic Meridional Overturning Circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes. J. Adv. Model. Earth Syst. 12, e2019MS002014 (2020).

    Article  Google Scholar 

  50. 50.

    Barnes, E. A. & Screen, J. A. The impact of Arctic warming on the midlatitude jet‐stream: Can it? Has it? Will it? Wiley Interdiscip. Rev. Clim. Change 6, 277–286 (2015).

    Article  Google Scholar 

  51. 51.

    Vose, R. et al. NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid), Version 1 (NOAA National Centers for Environmental Information, 2014).

  52. 52.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  Google Scholar 

  53. 53.

    Rohde, R. A. & Hausfather, Z. The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).

    Article  Google Scholar 

  54. 54.

    Slivinski, L. C. et al. Towards a more reliable historical reanalysis: improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 145, 2876–2908 (2019).

    Article  Google Scholar 

  55. 55.

    Compo, G. P. et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  56. 56.

    Rayner, N. A. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Article  Google Scholar 

  57. 57.

    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article  Google Scholar 

  58. 58.

    Slivinski, L. C. et al. An evaluation of the performance of the Twentieth Century Reanalysis Version 3. J. Clim. 34, 1417–1438 (2021).

    Article  Google Scholar 

  59. 59.

    Hussain, M. M. & Mahmud, I. pyMannKendall: a python package for non-parametric Mann Kendall family of trend tests. J. Open Source Softw. 4, 1556 (2019).

    Article  Google Scholar 

  60. 60.

    Dawson, A. eofs: a library for EOF analysis of meteorological, oceanographic, and climate data. J. Open Res. Softw. 4, p.e14 (2016).

    Article  Google Scholar 

  61. 61.

    Frankignoul, C., Gastineau, G. & Kwon, Y. O. The influence of the AMOC variability on the atmosphere in CCSM3. J. Clim. 26, 9774–9790 (2013).

    Article  Google Scholar 

  62. 62.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  63. 63.

    Haarsma, R. J. et al. High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).

    Article  Google Scholar 

  64. 64.

    Kay, J. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

Download references


We thank the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and the climate modelling groups for producing and making available their model output. A.V.K. was supported by Cooperative Agreement No. G19AC00091 from the United States Geological Survey (USGS). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the views of the Northeast Climate Adaptation Science Center or the USGS. This manuscript was submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for governmental purposes. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. R.M.H. received no specific funding for this work.

Author information




A.V.K. designed the study and conducted the analyses. R.M.H. helped with interpretation. A.V.K. led the writing of the manuscript, with R.M.H. providing extensive comments and feedback throughout the process.

Corresponding author

Correspondence to Ambarish V. Karmalkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Vincent Saba, Sang-Ik Shin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spatial patterns of linear surface air temperature trends.

Trends are calculated for CRU dataset over the period 1902-2018 for a, annual (ANN), b, summer (JJA), and c, winter (DJF) mean SAT and are shown as the total change in °C. Yellow color indicates regions with warming over 2 °C between 1902-2018. The insets show trends for the northeastern United States.

Extended Data Fig. 2 Tropospheric temperature trends.

Linear trends in free air temperature anomalies from the 20CRv3 dataset averaged over two cross sections. The trends are presented as the total change in °C over the period 1902-2015. The triangles indicate latitudes and longitudes of Boston and New York City.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karmalkar, A.V., Horton, R.M. Drivers of exceptional coastal warming in the northeastern United States. Nat. Clim. Chang. 11, 854–860 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing