Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Differences in the temperature dependence of wetland CO2 and CH4 emissions vary with water table depth


Wetland CH4 emissions have been demonstrated to be more sensitive than wetland CO2 emissions to increasing temperatures, which may result in a greater relative contribution of CH4 to total GHG emissions under climate warming. However, it is not clear whether this greater sensitivity occurs globally across diverse hydrologic regimes. Here, we evaluate the temperature dependence of CO2 and CH4 emissions on water table depth using a global database and show similarities in the temperature dependence of CO2 and CH4 emissions. A lower water table is associated with a decrease in the temperature dependence of CH4 emissions and a higher water table has the opposite effect. Water table depth does not affect the temperature dependence of CO2 emissions. Our findings suggest the stimulatory effect of increasing temperature on wetland CH4 emissions may not always be stronger than that on CO2 emissions and depends on the wetland water table.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Temperature dependence of wetland CO2 and CH4 emissions.
Fig. 2: Temperature dependence of the CH4:CO2 emission ratio.
Fig. 3: Temperature dependence of CO2 and CH4 emissions at different WTD ranges.
Fig. 4: Temperature dependence of the CH4:CO2 emission ratio at different WTD ranges.

Data availability

The original data for this study will be publicly available at:

Code availability

The code used in this study is available from the corresponding author on reasonable request.


  1. 1.

    Davidson, N., Fluet-Chouinard, E. & Finlayson, M. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).

    Article  Google Scholar 

  2. 2.

    Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597 (2013).

    Article  Google Scholar 

  3. 3.

    Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B 363, 815–830 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 13835 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Yvon-Durocher, G., Montoya, J. M., Woodward, G., Jones, J. I. & Trimmer, M. J. G. C. B. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Glob. Change Biol. 17, 1225–1234 (2011).

    Article  Google Scholar 

  6. 6.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  7. 7.

    Dean, J. F. et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207–250 (2018).

    Article  Google Scholar 

  8. 8.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Comer-Warner, S. A. et al. Thermal sensitivity of CO2 and CH4 emissions varies with streambed sediment properties. Nat. Commun. 9, 2803 (2018).

    Article  CAS  Google Scholar 

  10. 10.

    Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K. & Zhuang, Q. L. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).

    Article  Google Scholar 

  11. 11.

    Xu, X. et al. Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13, 3735–3755 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Riley, W. et al. Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8, 1925–1953 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nat. Commun. 11, 5733 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Koffi, E. N., Bergamaschi, P., Alkama, R. & Cescatti, A. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Sci. Adv. 6, eaay4444 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    Walter, B. P. & Heimann, M. A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob. Biogeochem. Cycles 14, 745–765 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    Christensen, T. R. et al. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30, 1414 (2003).

    Article  CAS  Google Scholar 

  22. 22.

    Inglett, K. S., Inglett, P. W., Reddy, K. R. & Osborne, T. Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108, 77–90 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Vicca, S., Janssens, I. A., Flessa, H., Fiedler, S. & Jungkunst, H. F. Temperature dependence of greenhouse gas emissions from three hydromorphic soils at different groundwater levels. Geobiology 7, 465–476 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Leroy, F. et al. Vegetation composition controls temperature sensitivity of CO2 and CH4 emissions and DOC concentration in peatlands. Soil Biol. Biochem. 107, 164–167 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53, 521–528 (2001).

    Google Scholar 

  26. 26.

    Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    CAS  Article  Google Scholar 

  27. 27.

    Zhu, J. et al. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States. Hydrol. Earth Syst. Sci. 21, 6289–6305 (2017).

    Article  Google Scholar 

  28. 28.

    Amatya, D., Chescheir, G., Williams, T., Skaggs, R. & Tian, S. Long–term water table dynamics of forested wetlands: drivers and their effects on wetland hydrology in the Southeastern Atlantic Coastal Plain. Wetlands 40, 65–79 (2020).

    Article  Google Scholar 

  29. 29.

    Fan, Y. & Miguez-Macho, G. A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim. Dynam. 37, 253–278 (2011).

    Article  Google Scholar 

  30. 30.

    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Moore, T. & Roulet, N. T. Methane flux: water table relations in northern wetlands. Geophys. Res. Lett. 20, 587–590 (1993).

    CAS  Article  Google Scholar 

  32. 32.

    Yang, J. et al. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biol. Biochem. 61, 52–60 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Moore, T. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).

    CAS  Article  Google Scholar 

  34. 34.

    Eyring, H. The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935).

    CAS  Article  Google Scholar 

  35. 35.

    Lafleur, P. M., Moore, T. R., Roulet, N. T. & Frolking, S. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8, 619–629 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    Matysek, M. et al. Impact of fertiliser, water table, and warming on celery yield and CO2 and CH4 emissions from fenland agricultural peat. Sci. Total Environ. 667, 179–190 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Juszczak, R. et al. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 366, 505–520 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    Yang, G. et al. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biol. Biochem. 78, 83–89 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Zhao, M. et al. Responses of soil CO2 and CH4 emissions to changing water table level in a coastal wetland. J. Clean. Prod. 269, 122316 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    Olefeldt, D. et al. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability. Glob. Change Biol. 23, 2428–2440 (2017).

    Article  Google Scholar 

  41. 41.

    Turetsky, M. R. et al. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J. Geophys. Res. Biogeosci. 113, G00A10 (2008).

    Article  CAS  Google Scholar 

  42. 42.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627.

  43. 43.

    Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Change 11, 45–51 (2021).

    Article  Google Scholar 

  44. 44.

    Evans et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    CAS  Google Scholar 

  45. 45.

    Chen, H., Zou, J., Cui, J., Nie, M. & Fang, C. Wetland drying increases the temperature sensitivity of soil respiration. Soil Biol. Biochem. 120, 24–27 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Humpenoeder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).

    Article  Google Scholar 

  47. 47.

    Manton, M. et al. Assessment and spatial planning for peatland conservation and restoration: Europe’s trans-border Neman river basin as a case study. Land 10, 174 (2021).

    Article  Google Scholar 

  48. 48.

    Gedney, N., Cox, P. & Huntingford, C. Climate feedback from wetland methane emissions. Geophys. Res. Lett. 31, L20503 (2004).

    Article  CAS  Google Scholar 

  49. 49.

    Spahni, R. et al. Constraining global methane emissions and uptake by ecosystems. Biogeosciences 8, 1643–1665 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Matthews, G. V. T. The Ramsar Convention on Wetlands: Its History and Development (Ramsar Convention Bureau, 1993)

  51. 51.

    Pinheiro, J. & Bates, D. Mixed-Effects Models in S and S-PLUS (Springer Science & Business Media, 2006).

  52. 52.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).

  53. 53.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020);

  54. 54.

    Schenker, N. & Gentleman, J. F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 55, 182–186 (2001).

    Article  Google Scholar 

  55. 55.

    Payton, M. E., Greenstone, M. H. & Schenker, N. Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? J. Insect Sci. 3, 34 (2003).

    Article  Google Scholar 

Download references


We greatly appreciate the authors of the published studies who supported our data sources. We also thank J. Zou, Y. Zhang, M. Wang and other students for their contributions to the database. The National Science Foundation of China provided support for M.N. and H.C. (grant no. 91951112), B.L., M.N. and X.X. (grant no. 41630528) and C.F. and X.X. (grant no. 32030067).

Author information




M.N. designed the research. H.C. performed the overall analysis with the assistance from X.X., M.N., B.L. and C.F. H.C. and M.N. wrote the first draft and all authors jointly revised the manuscript.

Corresponding author

Correspondence to Ming Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Sophie Comer-Warner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Geographical distribution of the study sites.

Some of the sites are very close to one another, and the corresponding symbols thus overlap to some extent.

Extended Data Fig. 2 The relationship between wetland CO2 (a, c) and CH4 (b, d) emission rates and temperature across 204 sites.

Regression lines represent the fitted efflux–temperature exponential (a, b) and linear (c, d) relationships.

Extended Data Fig. 3 Correlations of average site temperatures with average CO2 and CH4 emissions in globally distributed ecosystems.

The average site temperature is positively correlated with the average CO2 (a) and CH4 (b) emissions, ln\(\bar R\)(T), across 204 sites.

Extended Data Fig. 4 Influence of water table depth (WTD) on the temperature dependence of wetland CH4 and CO2 emissions.

Different letters denote significant differences (P < 0.01). The sample sizes by greenhouse gas type and water table depth interval are as follows: CO2, < −30 = 332; CO2, −30 to −5 = 675; CO2, > −5 = 592; CH4, < −30 = 331; CH4, −30 to −5 = 676; CH4, > −5 = 589. The data are represented as the mean and s.e. (the s.e. values among different water table depth intervals were obtained from the mixed-effects models).

Extended Data Fig. 5 Correlation of water table depth (WTD) with the temperature dependence of CO2 and CH4 emissions for wetland sites with relatively static water tables.

The apparent activation energy was used to reflect the temperature dependence of CO2 and CH4 emissions (more details in the Method).

Extended Data Fig. 6 Frequency distribution of site-level mean water table depth (WTD) values.

The solid line represents a Gaussian distribution fitted to the frequency data for WTD. The distribution of site-level mean WTD values yields an average of −18 cm (represented by the dashed line).

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xu, X., Fang, C. et al. Differences in the temperature dependence of wetland CO2 and CH4 emissions vary with water table depth. Nat. Clim. Chang. 11, 766–771 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing