Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The adverse consequences of global harvest and weather disruptions on economic activity


Extreme weather events are expected to increase with climate change. Such events are detrimental for local economic activity but could also affect countries that are not directly exposed through global agricultural production shortfalls and price surges. Here, estimations for 75 countries show that increases in global agricultural commodity prices caused by harvest or weather disruptions in other regions of the world significantly curtail economic activity. The impact is considerably stronger in advanced countries, despite relatively lower shares of food in household expenditures. Effects are weaker when countries are net exporters of agricultural products, have large agricultural sectors and/or are less integrated in global markets for non-agricultural trade. Once we control for these characteristics, the relationship between the country’s income per capita and the economic repercussions becomes negative. Overall, these findings suggest that the consequences of climate change on advanced countries, particularly through food prices, may be larger than previously thought.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Evolution of global real agricultural commodity prices over time.
Fig. 2: Dynamic effects of global agricultural commodity market disruptions.
Fig. 3: Effects of global agricultural commodity market disruptions on other variables.
Fig. 4: Effects of global agricultural commodity market disruptions in advanced versus poor countries.
Fig. 5: Effects of global agricultural commodity market disruptions on country groups according to other characteristics.
Fig. 6: Influence of country characteristics on the magnitudes of the macroeconomic consequences of global agricultural market disruptions.

Data availability

The datasets used for this paper are available at:

Code availability

The codes to reproduce the results of the paper are available at:


  1. Munasinghe, L., Jun, T. & Rind, D. Climate Change: a new metric to measure changes in the frequency of extreme temperatures using record data. Climatic Change 113, 1001–1024 (2012).

    Article  Google Scholar 

  2. Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).

    CAS  Article  Google Scholar 

  3. Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    Article  Google Scholar 

  4. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  5. IPCC 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Calvo Buendia, E. et al.) (IPCC, 2019).

  6. Rosenzweig, C. & Parry, M. Potential impact of climate change on world food supply. Nature 367, 133–138 (1994).

    Article  Google Scholar 

  7. Nordhaus, W. D. Geography and macroeconomics: new data and new findings. Proc. Natl Acad. Sci. USA 103, 3510–3517 (2006).

    CAS  Article  Google Scholar 

  8. Mendelsohn, R. The impact of climate change on agriculture in developing countries. J. Nat. Resour. Pol. Res. 1, 5–19 (2008).

    Article  Google Scholar 

  9. Dell, Melissa, Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

    Article  Google Scholar 

  10. Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

    Article  CAS  Google Scholar 

  11. Liu, B. et al. Similar estimates of temperature impacts on global wheat yield independent methods. Nat. Clim. Change 6, 1130–1136 (2016).

    Article  Google Scholar 

  12. Barriopedro, D., Fischer, E., Luterbacher, J., Trigo, R. & Garcia-Herrera, R. The hot 37 summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    CAS  Article  Google Scholar 

  13. Hoag, H. Russian summer tops universal heatwave index. Nat. News (2014).

  14. De Winne, J. & Peersman, G. The macroeconomic effects of disruptions in global food commodity markets: evidence for the United States. Brook. Pap. Econ. Act. 47, 183–286 (2016).

    Article  Google Scholar 

  15. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    CAS  Article  Google Scholar 

  16. Bailey, R. et al. Extreme Weather and Resilience of the Global Food System (The Global Food Security, 2015).

  17. Battisti, D. & Naylor, R. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    CAS  Article  Google Scholar 

  18. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    Article  Google Scholar 

  19. Hasegawa, T. et al. Risk of increase food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).

    Article  Google Scholar 

  20. Tigchelaar, M., Battisti, D., Naylor, R. & Ray, D. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA 115, 6644–6649 (2018).

    Article  CAS  Google Scholar 

  21. Addison, T., Ghoshray, A. & Stamatogiannis, M. P. Agricultural commodity price shocks and their effect on growth in Sub-Saharan Africa. J. Agric. Econ. 67, 47–61 (2016).

    Article  Google Scholar 

  22. Dreschel, T. & Tenreyro, S. Commodity Booms and Busts in Emerging Economics (NBER, 2017).

  23. Fernandez, A., Schmitt-Grohe, S. & Uribe, M. World shocks, world prices, and business cycles: an empirical investigation. J. Int. Econ. 108, S2–S14 (2017).

    Article  Google Scholar 

  24. Headey, D. & Fan, S. Anatomy of a crisis: the causes and consequences of surging food prices. Agric. Econ. 39, 375–391 (2008).

    Article  Google Scholar 

  25. Abbott, P. C., Hurt, C. & Tyner, W. E. What’s Driving Food Prices in 2011? (Farm Foundation, 2011).

  26. Stock, J. H. & Watson, M. W. Disentangling the channels of the 2007–2009 recession. Brook. Pap. Econ. Act. 43, 81–156 (2012).

    Article  Google Scholar 

  27. Mertens, K. & Ravn, M. O. The dynamic effects of personal and corporate income tax changes in the United States. Am. Econ. Rev. 103, 1212–1247 (2013).

    Article  Google Scholar 

  28. Jordà, Ò. Estimation and inference of impulse responses by local projections. Am. Econ. Rev. 95, 161–182 (2005).

    Article  Google Scholar 

  29. Bernanke, B. S., Gertler, M. & Gilchrist, S. in Handbook of Macroeconomics (eds Taylor, J. B. & Woodford, M.) 1341–1393 (Elsevier, 1999).

  30. Christiano, L., Eichenbaum, M. & Evans, C. Nominal rigidities and the dynamic effects of a shock to monetary policy. J. Political Econ. 113, 1–45 (2005).

    Article  Google Scholar 

  31. Smets, F. & Wouters, R. Shocks and frictions in US business cycles: a Bayesian DSGE approach. Am. Econ. Rev. 97, 586–606 (2007).

    Article  Google Scholar 

  32. Ezekiel, M. The Cobweb Theorem. Q. J. Econ. 52, 255–280 (1938).

    Article  Google Scholar 

  33. Glauber J. W. & Miranda M. J. in Food Price Volatility and Its Implications for Food Security and Policy (eds Kalkuhl M. et al.) 83–100 (Springer, 2016).

  34. Muth, J. Rational expectations and the theory of price movements. Econometrica 29, 315–335 (1961).

    Article  Google Scholar 

  35. World Economic Outlook Database—WEO Groups and Aggregates (International Monetary Fund, 2021);

  36. De Winne, J. & Peersman, G. The impact of food prices on conflict revisited. J. Bus. Econ. Stat. 39, 547–560 (2021).

    Article  Google Scholar 

  37. Denizer, C. A., Iyigun, M. F. & Owen, A. Finance and macroeconomic volatility. BE J. Macroecon. 2, 7 (2002).

  38. Dynan, K. E., Elmendorf, D. W. & Sichel, D. E. Can financial innovation help to explain the reduced volatility of economic activity? J. Monet. Econ. 53, 123–150 (2006).

    Article  Google Scholar 

  39. Di Pace, F., Juvenal, L. & Petrella, I. Terms-of-Trade Shocks are Not all Alike (IMF, 2020).

  40. Cudjoe, G., Breisinger, C. & Diao, X. Local impacts of a global crisis: food price transmission, consumer welfare and poverty in Ghana. Food Policy 35, 294–330 (2010).

    Article  Google Scholar 

  41. Clark, T. E. & Van Wincoop, E. Borders and business cycles. J. Int. Econ. 55, 59–85 (2001).

    Article  Google Scholar 

  42. Calderón, C., Chong, A. & Stein, E. Trade intensity and business cycle synchronization: are developing countries any different? J. Int. Econ. 71, 2–21 (2007).

    Article  Google Scholar 

  43. di Giovanni, J. & Levchenko, A. Trade openness and volatility. Rev. Econ. Stat. 91, 558–585 (2009).

    Article  Google Scholar 

  44. Althor, G., Watson, J. & Fuller, R. A. Global mismatch between greenhouse gas emissions and the burden of climate change. Sci. Rep. 6, 20281 (2016).

  45. Woodford, M. Interest and Prices: Foundations of a Theory of Monetary Policy 381–626 (Princeton Univ. Press, 2003).

  46. Swinnen, J. & Squicciarini, P. Mixed messages on prices and food security. Science 335, 405–406 (2012).

    CAS  Article  Google Scholar 

  47. Aksoy, M. A. & Isik-Dikmelik, A. Are Low Food Prices Pro-Poor? Net Food Buyers and Sellers in Low-Income Countries (World Bank, 2008).

  48. Ivanic, M. & Martin, W. Implications of higher global food prices for poverty in low-income countries. Agric. Econ. 39, 405–416 (2008).

    Article  Google Scholar 

  49. Ivanic, M. & Martin, W. Short-and Long-Run Impacts of Food Price Changes on Poverty (World Bank, 2014).

  50. Verpoorten, M., Arora, A., Stoop, N. & Swinnen, J. Self-reported food insecurity in Africa during the food price crisis. Food Policy 39, 51–63 (2013).

    Article  Google Scholar 

  51. Jacoby, H. G. Food prices, wages, and welfare in rural India. Econ. Inq. 54, 159–176 (2016).

    Article  Google Scholar 

  52. Sims, C. A. Macroeconomics and reality. Econometrica 48, 1–48 (1980).

    Article  Google Scholar 

  53. Roberts, M. J. & Schlenker, W. Identifying supply and demand elasticities of agricultural commodities: implications for the US ethanol mandate. Am. Econ. Rev. 103, 2265–2295 (2013).

    Article  Google Scholar 

  54. IMF Primary Commodity Prices (IMF, 2021);

  55. Peersman, G. International food commodity prices and missing (dis)inflation in the Euro area. Rev. Econ. Stat. (in the press).

  56. Ramey, V. A. Macroeconomic Shocks and Their Propagation (NBER, 2016).

  57. Sims, C. A., Stock, J. H. & Watson, M. W. Inference in linear time series models with some unit roots. Econometrica 58, 113–144 (1990).

    Article  Google Scholar 

  58. Elliott, G. On the robustness of cointegration methods when regressors almost have unit roots. Econometrica 66, 149–158 (1998).

    Article  Google Scholar 

  59. Mertens, K. & Ravn, M. O. The dynamic effects of personal and corporate income tax changes in the United States: reply. Am. Econ. Rev. 109, 2679–2691 (2019).

    Article  Google Scholar 

  60. Boeckx, J., De Sola Perea, M. & Peersman, G. The transmission mechanism of credit support policies in the Euro area. Eur. Econ. Rev. (2020).

  61. Pesaran, M. H., Shin, Y. & Smith, R. P. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 94, 621–634 (1999).

    Article  Google Scholar 

  62. Thompson, S. B. Simple formulas for standard errors that cluster by both firm and time. J. Financ. Econ. 99, 1–10 (2011).

    Article  Google Scholar 

  63. Schmitt, M. A., Lamb, J. A., Randall, G. W., Orf, J. M. & Rehm, G. W. In-season fertilizer nitrogen applications for soybean in Minnesota. Agron. J. 93, 983–988 (2001).

    Article  Google Scholar 

  64. Scharf, P. C., Wiebold, W. J. & Lory, J. A. Corn yield response to nitrogen fertilizer timing and deficiency level. Agron. J. 94, 435–441 (2002).

    Article  Google Scholar 

  65. Pindyck, R. S. The present value model of rational commodity pricing. Econ. J. 103, 511–530 (1993).

    Article  Google Scholar 

  66. Deaton, A. & Laroque, G. On the behaviour of commodity prices. Rev. Econ. Stud. 59, 1–23 (1992).

    Article  Google Scholar 

  67. Wright, B. Global biofuels: key to the puzzle of grain market behavior. J. Econ. Perspect. 28, 73–98 (2014).

  68. Mendelsohn, R., Nordhaus, W. D. & Shaw, D. The impact of global warming on agriculture: a Ricardian analysis. Am. Econ. Rev. 84, 753–771 (1994).

    Google Scholar 

  69. Harris, I., Jones, P. & Osborn, T. CRU TS4.04: Climatic Research Unit (CRU) Time-Series (TS) Version 4.04 of High-Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901–Dec. 2019) (CEDA, 2020);

  70. Monfreda, C., Ramankutty, N. & Foley, J. Farming the planet: 2. Geographic distribution of crop area, yield, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

  71. Sacks, W., Deryng, D., Foley, J. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

Download references


We acknowledge financial support from The Research Foundation Flanders (FWO), grant no. G020713N (G.P.). The UGent Special Research Fund (BOF) provided PhD scholarship for J.DeW.

Author information

Authors and Affiliations



Both authors have made substantial contributions to all aspects of the paper.

Corresponding author

Correspondence to Gert Peersman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Andrea Guariso, Will Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Tables 1–4 and Figs. 1–13.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Winne, J., Peersman, G. The adverse consequences of global harvest and weather disruptions on economic activity. Nat. Clim. Chang. 11, 665–672 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing