Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Equity in allocating carbon dioxide removal quotas


The first nationally determined contributions to the Paris Agreement include no mention of the carbon dioxide removal (CDR) necessary to reach the Paris targets, leaving open the question of how and by whom CDR will be delivered. Drawing on existing equity frameworks, we allocate CDR quotas globally according to Responsibility, Capability and Equality principles. These quotas are then assessed in the European Union context by accounting for domestic national capacity of a portfolio of CDR options, including bioenergy with carbon capture and storage, reforestation and direct air capture. We find that quotas vary greatly across principles, from 33 to 325 GtCO2 allocated to the European Union, and, due to biophysical limits, only a handful of countries could meet their quotas acting individually. These results support strengthening cross-border cooperation while highlighting the need to urgently deploy CDR options to mitigate the risk of failing to meet the climate targets equitably.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cumulative CDR quotas by 2100 for the UNFCCC countries according to equity principles.
Fig. 2: Comparison between the CO2 removal and storage potentials in each EU country and the quotas derived from the equity principles.
Fig. 3: Comparison between temporal CDR natural potentials with the quotas for all equity principles in Germany.

Data availability

All raw data supporting the findings of this study can be procured through the referenced literature. Data used for the figures are publicly available online at or from the corresponding author on reasonable request.


  1. 1.

    IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  2. 2.

    Rogelj, J. Regional Contributions to Achieving Global Net Zero Emissions (WRI, 2019);

  3. 3.

    Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

    Google Scholar 

  4. 4.

    Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Google Scholar 

  5. 5.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

  6. 6.

    Geden, O., Peters, G. P. & Scott, V. Targeting carbon dioxide removal in the European Union. Clim. Policy 19, 487–494 (2019).

    Google Scholar 

  7. 7.

    Peters, G. P. et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Change 7, 118–122 (2017).

    Google Scholar 

  8. 8.

    van Vuuren, D. P., Hof, A. F., van Sluisveld, M. A. E. & Riahi, K. Open discussion of negative emissions is urgently needed. Nat. Energy 2, 902–904 (2017).

    Google Scholar 

  9. 9.

    Scott, V. & Geden, O. The challenge of carbon dioxide removal for EU policy-making. Nat. Energy 3, 350–352 (2018).

    CAS  Google Scholar 

  10. 10.

    Schiermeier, Q. Combined climate pledges of 146 nations fall short of 2°C target. Nature (2015).

  11. 11.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Google Scholar 

  12. 12.

    Rogelj, J. et al. Understanding the origin of Paris Agreement emission uncertainties. Nat. Commun. 8, 15748 (2017).

    CAS  Google Scholar 

  13. 13.

    Peters, G. P. & Geden, O. Catalysing a political shift from low to negative carbon. Nat. Clim. Change 7, 619–621 (2017).

    Google Scholar 

  14. 14.

    Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    CAS  Google Scholar 

  15. 15.

    Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2 °C. Nat. Commun. 6, 7958 (2015).

    CAS  Google Scholar 

  16. 16.

    Fleurbaey, M. et al. Chapter 4: Sustainable Development and Equity. In Climate Change 2014: Mitigation of Climate Change. (eds Edenhofer, O. et al.) Ch. 4 (Cambridge Univ. Press, 2014).

  17. 17.

    van den Berg, N. J. et al. Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Clim. Change (2019).

  18. 18.

    Du Pont, Y. R. et al. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7, 38–43 (2017).

    Google Scholar 

  19. 19.

    Klinsky, S. et al. Why equity is fundamental in climate change policy research. Glob. Environ. Change 44, 170–173 (2017).

    Google Scholar 

  20. 20.

    Pan, X., den Elzen, M., Höhne, N., Teng, F. & Wang, L. Exploring fair and ambitious mitigation contributions under the Paris Agreement goals. Environ. Sci. Policy 74, 49–56 (2017).

    Google Scholar 

  21. 21.

    Höhne, N., den Elzen, M. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy 14, 122–147 (2014).

    Google Scholar 

  22. 22.

    Strefler, J. et al. Between Scylla and Charybdis: delayed mitigation narrows the passage between large-scale CDR and high costs. Environ. Res. Lett. 13, 44015 (2018).

    Google Scholar 

  23. 23.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Google Scholar 

  24. 24.

    McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B. & Markusson, N. O. Beyond ‘Net-Zero’: a case for separate targets for emissions reduction and negative emissions. Front. Clim. 1, 4 (2019).

    Google Scholar 

  25. 25.

    Dooley, K. & Kartha, S. Land-based negative emissions: risks for climate mitigation and impacts on sustainable development. Int. Environ. Agreements Polit. Law Econ. 18, 79–98 (2018).

    Google Scholar 

  26. 26.

    Honegger, M. & Reiner, D. The political economy of negative emissions technologies: consequences for international policy design. Clim. Policy 18, 306–321 (2018).

    Google Scholar 

  27. 27.

    Galán-Martín, A. et al. Time for global action: an optimised cooperative approach towards effective climate change mitigation. Energy Environ. Sci. 11, 459–718 (2018).

  28. 28.

    Ringius, L., Frederiksen, P. & Birr-Pedersen, K. Burden Sharing in the Context of Global Climate Change: A North–South Perspective Technical Report No. 424 (NERI, 2002).

  29. 29.

    Ringius, L., Torvanger, A. & Underdal, A. Burden sharing and fairness principles in international climate policy. Int. Environ. Agreements 2, 1–22 (2002).

    Google Scholar 

  30. 30.

    Ringius, L., Torvanger, A. & Holtsmark, B. Can multi-criteria rules fairly distribute climate burdens?: OECD results from three burden sharing rules. Energy Policy 26, 777–793 (1998).

    Google Scholar 

  31. 31.

    Pan, X., Teng, F., Ha, Y. & Wang, G. Equitable access to sustainable development: based on the comparative study of carbon emission rights allocation schemes. Appl. Energy 130, 632–640 (2014).

    Google Scholar 

  32. 32.

    Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nat. Clim. Change 4, 873–879 (2014).

    CAS  Google Scholar 

  33. 33.

    Kartha, S. et al. Cascading biases against poorer countries. Nat. Clim. Change 8, 348–349 (2018).

    Google Scholar 

  34. 34.

    Solano Rodriguez, B., Drummond, P. & Ekins, P. Decarbonizing the EU energy system by 2050: an important role for BECCS. Clim. Policy 17, S93–S110 (2017).

    Google Scholar 

  35. 35.

    van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    Google Scholar 

  36. 36.

    Fajardy, M., Chiquier, S. & Mac Dowell, N. Investigating the BECCS resource nexus: delivering sustainable negative emissions. Energy Environ. Sci. 11, 3408–3430 (2018).

    CAS  Google Scholar 

  37. 37.

    Kraxner, F. et al. In Handbook of Clean Energy Systems (Ed. J. Yan) 1465–1484 (John Wiley & Sons, 2015).

  38. 38.

    Selosse, S. & Ricci, O. Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: new insights from the TIAM-FR (TIMES Integrated Assessment Model France) model. Energy 76, 967–975 (2014).

    Google Scholar 

  39. 39.

    Mander, S., Anderson, K., Larkin, A., Gough, C. & Vaughan, N. The role of bio-energy with carbon capture and storage in meeting the climate mitigation challenge: a whole system perspective. Energy Procedia 114, 6036–6043 (2017).

    Google Scholar 

  40. 40.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    CAS  Google Scholar 

  41. 41.

    Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 1–12 (2019).

    Google Scholar 

  42. 42.

    Keith, D. W. Why capture CO2 from the atmosphere? Science 325, 1654–1655 (2009).

    CAS  Google Scholar 

  43. 43.

    Chen, C. & Tavoni, M. Direct air capture of CO2 and climate stabilization: a model based assessment. Clim. Change 118, 59–72 (2013).

    CAS  Google Scholar 

  44. 44.

    McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 90, 489–500 (2012).

    CAS  Google Scholar 

  45. 45.

    Brent, K., McGee, J., McDonald, J. & Rohling, E. J. International law poses problems for negative emissions research. Nat. Clim. Change 8, 451–453 (2018).

    Google Scholar 

  46. 46.

    Minx, J. C. et al. Negative emissions—part 1: research landscape and synthesis. Environ. Res. Lett. 13, 63001 (2018).

    Google Scholar 

  47. 47.

    Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 63002 (2018).

    Google Scholar 

  48. 48.

    Peters, G. P. Beyond carbon budgets. Nat. Geosci. 11, 378–380 (2018).

    CAS  Google Scholar 

  49. 49.

    Emmerling, J. et al. The role of the discount rate for emission pathways and negative emissions. Environ. Res. Lett. 14, 104008 (2019).

    CAS  Google Scholar 

  50. 50.

    Den Elzen, M., Lucas, P. & van Vuuren, D. Abatement costs of post-Kyoto climate regimes. Energy Policy 33, 2138–2151 (2005).

    Google Scholar 

  51. 51.

    Boden, T. A., Marland, G. & Andres, R. Global, Regional, and National Fossil-Fuel CO 2 Emissions (USDOE, 2017);

  52. 52.

    National Inventory Submissions. United Nations Framework Convention on Climate Change (UNFCCC, 2018).

  53. 53.

    Statistical Review of World Energy (BP, 2018).

  54. 54.

    World Development Indicators. DataBank (The World Bank, accessed 1 September 2019);

  55. 55.

    Chontanawat, J., Hunt, L. C. & Pierse, R. Does energy consumption cause economic growth?: evidence from a systematic study of over 100 countries. J. Policy Model. 30, 209–220 (2008).

    Google Scholar 

  56. 56.

    Barrett, S. et al. Combating Global Warming: A Global System of Tradable Carbon Emission Entitlements (UNCTAD, 1992).

  57. 57.

    Vicens, J. et al. Resource heterogeneity leads to unjust effort distribution in climate change mitigation. PLoS ONE 13, e0204369 (2018).

    Google Scholar 

  58. 58.

    Baik, E. et al. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States. Proc. Natl Acad. Sci. USA 115, 3290–3295 (2018).

    CAS  Google Scholar 

  59. 59.

    Cai, X., Zhang, X. & Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 45, 334–339 (2010).

    Google Scholar 

  60. 60.

    Wiesenthal, T. & Mourelatou, A. How Much Bioenergy can Europe Produce Without Harming the Environment? Report No. 7 (EEA, 2006).

  61. 61.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Google Scholar 

  62. 62.

    Vangkilde-Pedersen, T. et al. Assessing European capacity for geological storage of carbon dioxide–the EU GeoCapacity project. Energy Procedia 1, 2663–2670 (2009).

    CAS  Google Scholar 

  63. 63.

    Huppert, H. Carbon Capture and Storage in Europe EASAC Policy Report No. 20 (German National Academy of Sciences Leopoldina, 2013).

  64. 64.

    Socolow, R. et al. Direct Air Capture of CO 2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs (American Physical Society, 2011).

  65. 65.

    Creutzig, F. et al. The mutual dependence of negative emission technologies and energy systems. Energy Environ. Sci. 12, 1805–1817 (2019).

    CAS  Google Scholar 

  66. 66.

    Digest of UK Energy Statistics (DUKES) 2018: Main Report (Department for Business Energy & Industrial Strategy, 2018).

  67. 67.

    Fajardy, M. & Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 1389–1426 (2017).

    CAS  Google Scholar 

  68. 68.

    Sterman, J. D., Siegel, L. & Rooney-Varga, J. N. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy. Environ. Res. Lett. 13, 15007 (2018).

    Google Scholar 

  69. 69.

    Heuberger, C. F., Staffell, I., Shah, N. & Mac Dowell, N. Impact of myopic decision-making and disruptive events in power systems planning. Nat. Energy 3, 634–640 (2018).

    Google Scholar 

  70. 70.

    Röder, M. & Thornley, P. Bioenergy as climate change mitigation option within a 2°C target—uncertainties and temporal challenges of bioenergy systems. Energy Sustain. Soc. 6, 6 (2016).

    Google Scholar 

  71. 71.

    Lomax, G., Lenton, T. M., Adeosun, A. & Workman, M. Investing in negative emissions. Nat. Clim. Change 5, 498–500 (2015).

    Google Scholar 

  72. 72.

    Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    CAS  Google Scholar 

  73. 73.

    Daggash, H. A., Heuberger, C. F. & Mac Dowell, N. The role and value of negative emissions technologies in decarbonising the UK energy system. Int. J. Greenh. Gas Control 81, 181–198 (2019).

    CAS  Google Scholar 

  74. 74.

    Zakkour, P., Kemper, J. & Dixon, T. Incentivising and accounting for negative emission technologies. Energy Procedia 63, 6824–6833 (2014).

    CAS  Google Scholar 

  75. 75.

    Bednar, J., Obersteiner, M. & Wagner, F. On the financial viability of negative emissions. Nat. Commun. 10, 1783 (2019).

    Google Scholar 

  76. 76.

    Mac Dowell, N. & Fajardy, M. Inefficient power generation as an optimal route to negative emissions via BECCS? Environ. Res. Lett. 12, 45004 (2017).

    Google Scholar 

  77. 77.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  78. 78.

    Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Google Scholar 

  79. 79.

    Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

  80. 80.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the great acceleration. Anthr. Rev. 2, 81–98 (2015).

    Google Scholar 

  81. 81.

    Leimbach, M., Kriegler, E., Roming, N. & Schwanitz, J. Future growth patterns of world regions—a GDP scenario approach. Glob. Environ. Change 42, 215–225 (2017).

    Google Scholar 

  82. 82.

    World Population Prospects: 2017 Revision (UN, 2017);

  83. 83.

    Phyllis2 (ECN, 2014);

  84. 84.

    Don, A. et al. Land‐use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4, 372–391 (2012).

    CAS  Google Scholar 

  85. 85.

    Kang, S. et al. Global simulation of bioenergy crop productivity: analytical framework and case study for switchgrass. GCB Bioenergy 6, 14–25 (2014).

    CAS  Google Scholar 

  86. 86.

    Forest Biomass for Energy in the EU: Current Trends, Carbon Balance and Sustainable Potential (IINAS, 2014).

  87. 87.

    Mantau, U. et al. EUwood—Real Potential for Changes in Growth and Use of EU Forests (Univ. of Hamburg, Centre of Wood Science, 2010).

  88. 88.

    Elbersen, B. et al. Atlas of EU Biomass Potentials (Biomass Futures, 2012).

  89. 89.

    Fritz, S. et al. Downgrading recent estimates of land available for biofuel production. Environ. Sci. Technol. 47, 1688–1694 (2013).

    CAS  Google Scholar 

  90. 90.

    Röös, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Change 47, 1–12 (2017).

    Google Scholar 

Download references


We acknowledge the support from the Natural Environment Research Council for funding the GGROpt project (grant no. NE/P019900/1).

Author information




C.P and A.G.-M. conceived the research and carried out the numerical calculations. C.P, A.G.-M., D.M.R., N.M.D. and G.G.-G. contributed to interpreting the results and writing the manuscript.

Corresponding authors

Correspondence to David M. Reiner or Niall Mac Dowell or Gonzalo Guillén-Gosálbez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Heleen van Soest and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Estimation of temporal CDR potential.

Subplot (a) illustrates the procedure followed to estimate the annual removal natural potential in each country, which is translated into a certain amount of CO2 accumulated yearly in biomass resources as shown in subplot (b). Subplot (c) provides the cumulative removal natural potential resulting from adding up annual potentials over the time horizon. Each series (in green) corresponds to the situation where all annual resources are used from a certain year (that is, 2020, 2030, and 2090) onwards. The removal natural potential lost due to delaying actions is provided for each of these years with red arrows located at the right-hand side of the plot.

Supplementary information

Supplementary Information

Supplementary methods, results, Figs. 1–4, Tables 1 and 2, and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pozo, C., Galán-Martín, Á., Reiner, D.M. et al. Equity in allocating carbon dioxide removal quotas. Nat. Clim. Chang. 10, 640–646 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing