Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts

Abstract

As Earth’s climate rapidly changes, species range shifts are considered key to species persistence. However, some range-shifting species will alter community structure and ecosystem processes. By adapting existing invasion risk assessment frameworks, we can identify characteristics shared with high-impact introductions and thus predict potential impacts. There are fundamental differences between introduced and range-shifting species, primarily shared evolutionary histories between range shifters and their new community. Nevertheless, impacts can occur via analogous mechanisms, such as wide dispersal, community disturbance and low biotic resistance. As ranges shift in response to climate change, we have an opportunity to develop plans to facilitate advantageous movements and limit those that are problematic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Risk assessments for biological introductions focus on the importance of three main components that lead to the successful establishment and spread of species: the introduction of propagules, the abiotic environment and biotic interactions.
Fig. 2: Range shifters can impact recipient communities.
Fig. 3: As climate change alters environmental conditions, range shifts can lead to new species interactions and changes to community structures depending on the magnitude of associated impacts.

References

  1. 1.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  2. 2.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  Google Scholar 

  3. 3.

    Sorte, C. J. B., Williams, S. L. & Carlton, J. T. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19, 303–316 (2010).

    Google Scholar 

  4. 4.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Google Scholar 

  5. 5.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Google Scholar 

  6. 6.

    Lipton, D. et al. in Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II (eds Reidmiller, D. R. et al.) Ch. 7 (U. S. Global Change Research Program, 2018).

  7. 7.

    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    CAS  Google Scholar 

  8. 8.

    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    CAS  Google Scholar 

  9. 9.

    Hodgson, J. A., Thomas, C. D., Wintle, B. A. & Moilanen, A. Climate change, connectivity and conservation decision making: back to basics. J. Appl. Ecol. 46, 964–969 (2009).

    Google Scholar 

  10. 10.

    Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824 (2017).

    Google Scholar 

  11. 11.

    McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. Framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).

    Google Scholar 

  12. 12.

    Bonebrake, T. C. et al. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol. Rev. 93, 284–305 (2018).

    Google Scholar 

  13. 13.

    Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).

    Google Scholar 

  14. 14.

    Post, E. Ecology of Climate Change (Princeton Univ. Press, 2013).

  15. 15.

    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    Google Scholar 

  16. 16.

    Wallingford, P. D. & Sorte, C. J. B. Community regulation models as a framework for direct and indirect effects of climate change on species distributions. Ecosphere 10, e02790 (2019).

    Google Scholar 

  17. 17.

    Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).

    CAS  Google Scholar 

  18. 18.

    Williamson, M. & Fitter, A. The varying success of invaders. Ecology 77, 1661–1666 (1996).

    Google Scholar 

  19. 19.

    Jeschke, J. M. & Strayer, D. L. Invasion success of vertebrates in Europe and North America. Proc. Natl Acad. Sci. USA 102, 7198–7202 (2005).

    CAS  Google Scholar 

  20. 20.

    Simberloff, D., Souza, L., Nuñez, M. A., Barrios-Garcia, M. N. & Bunn, W. The natives are restless, but not often and mostly when disturbed. Ecology 93, 598–607 (2012).

    Google Scholar 

  21. 21.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).

    Google Scholar 

  22. 22.

    Pyšek, P. & Richardson, D. M. in Biological Invasions (Ed. Nentwig, W.) 97–125 (Springer, 2008).

  23. 23.

    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).

  24. 24.

    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).

    Google Scholar 

  25. 25.

    Leung, B. et al. TEASIng apart alien species risk assessments: a framework for best practices. Ecol. Lett. 15, 1475–1493 (2012).

    Google Scholar 

  26. 26.

    Coutts, S. R., Helmstedt, K. J. & Bennett, J. R. Invasion lags: the stories we tell ourselves and our inability to infer process from pattern. Divers. Distrib. 24, 244–251 (2018).

    Google Scholar 

  27. 27.

    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).

    Google Scholar 

  28. 28.

    Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).

    Google Scholar 

  29. 29.

    Szűcs, M. et al. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc. Natl Acad. Sci. USA 114, 13501–13506 (2017).

    Google Scholar 

  30. 30.

    Dale, V. H. et al. Climate change and forest disturbances. Bioscience 51, 723–734 (2001).

    Google Scholar 

  31. 31.

    Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).

    Google Scholar 

  32. 32.

    Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15, 2084–2096 (2005).

    Google Scholar 

  33. 33.

    Raffa, K. F., Powell, E. N. & Townsend, P. A. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proc. Natl Acad. Sci. USA 110, 2193–2198 (2013).

    CAS  Google Scholar 

  34. 34.

    Lesk, C., Coffel, E., D’Amato, A. W., Dodds, K. & Horton, R. Threats to North American forests from southern pine beetle with warming winters. Nat. Clim. Change 7, 713–717 (2017).

    Google Scholar 

  35. 35.

    Dukes, J. S. et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can. J. For. Res. 39, 231–248 (2009).

    Google Scholar 

  36. 36.

    Berg, E. E., David Henry, J., Fastie, C. L., De Volder, A. D. & Matsuoka, S. M. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. For. Ecol. Manage. 227, 219–232 (2006).

    Google Scholar 

  37. 37.

    Weed, A. S., Ayres, M. P. & Hicke, J. A. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 83, 441–470 (2013).

    Google Scholar 

  38. 38.

    Rice, S. K., Westerman, B. & Federici, R. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecol. 174, 97–107 (2004).

    Google Scholar 

  39. 39.

    McCarthy-Neumann, S. & Ibáñez, I. Tree range expansion may be enhanced by escape from negative plant-soil feedbacks. Ecology 93, 2637–2649 (2012).

    Google Scholar 

  40. 40.

    Iverson, L. R., Prasad, A. M., Matthews, S. N. & Peters, M. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For. Ecol. Manage. 254, 390–406 (2008).

    Google Scholar 

  41. 41.

    Ramos JE, Pecl GT, Moltschaniwskyj NA, Strugnell JM, León RI, S. J. Body size, growth and life span: Implications for the polewards range shift of Octopus tetricus in south-eastern Australia. PLoS ONE 9, E103480 (2014).

  42. 42.

    Hoving, H.-J. T. et al. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Chang. Biol. 19, 2089–2103 (2013).

    Google Scholar 

  43. 43.

    Ramos, J. E. et al. Reproductive capacity of a marine species (Octopus tetricus) within a recent range extension area. Mar. Freshw. Res. 66, 999–1008 (2015).

    Google Scholar 

  44. 44.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Google Scholar 

  45. 45.

    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).

    Google Scholar 

  46. 46.

    Ramos, J. E. et al. Population genetic signatures of a climate change driven marine range extension. Sci. Rep. 8, 9558 (2018).

    Google Scholar 

  47. 47.

    Fridley, J. D. & Sax, D. F. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob. Ecol. Biogeogr. 23, 1157–1166 (2014).

    Google Scholar 

  48. 48.

    Cox, J. G. & Lima, S. L. Naivete and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).

    Google Scholar 

  49. 49.

    HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. NY Acad. Sci. 1297, 112–125 (2013).

    Google Scholar 

  50. 50.

    Engelkes, T. et al. Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456, 946–948 (2008).

    CAS  Google Scholar 

  51. 51.

    Katz, D. S. W. & Ibáñez, I. Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies. Ecology 97, 2331–2341 (2016).

    Google Scholar 

  52. 52.

    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).

    CAS  Google Scholar 

  53. 53.

    King, D. A., Bachelet, D. M. & Symstad, A. J. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model. Ecol. Evol. 3, 5076–5097 (2013).

    Google Scholar 

  54. 54.

    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).

    Google Scholar 

  55. 55.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    CAS  Google Scholar 

  56. 56.

    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    Google Scholar 

  57. 57.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    Google Scholar 

  58. 58.

    Gurevitch, J. & Padilla, D. K. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19, 470–474 (2004).

    Google Scholar 

  59. 59.

    Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989 (2004).

    Google Scholar 

  60. 60.

    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).

    Google Scholar 

  61. 61.

    Carey, M. P., Sanderson, B. L., Barnas, K. A. & Olden, J. D. Native invaders – challenges for science, management, policy, and society. Front. Ecol. Environ. 10, 373–381 (2012).

    Google Scholar 

  62. 62.

    Wood, C. M., Witham, J. W. & Hunter, M. L. Climate-driven range shifts are stochastic processes at a local level: two flying squirrel species in Maine. Ecosphere 7, e01240 (2016).

    Google Scholar 

  63. 63.

    Garroway, C. J. et al. Climate change induced hybridization in flying squirrels. Glob. Chang. Biol. 16, 113–121 (2010).

    Google Scholar 

  64. 64.

    Krichbaum, K. & Mahan, C. G. Steele, M. a, Turner, G. & Hudson, P. J. The potential role of Strongyloides robustus on parasite-mediated competition between two species of flying squirrels (Glaucomys). J. Wildl. Dis. 46, 229–235 (2010).

    Google Scholar 

  65. 65.

    Kennedy-Slaney, L., Bowman, J., Walpole, A. A. & Pond, B. A. Northward bound: the distribution of white-tailed deer in Ontario under a changing climate. J. Wildl. Res. 45, 220–228 (2018).

    Google Scholar 

  66. 66.

    Weiskopf, S. R., Ledee, O. E. & Thompson, L. M. Climate change effects on deer and moose in the midwest. J. Wildl. Manage. 83, 769–781 (2019).

    Google Scholar 

  67. 67.

    Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G. & Clark, J. A. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11, e0152636 (2016).

    Google Scholar 

  68. 68.

    Richardson, D. M. Ecology and Biogeography of Pinus (Cambridge Univ. Press, 1998).

  69. 69.

    Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Chang. Biol. 15, 719–731 (2009).

    Google Scholar 

  70. 70.

    Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130269 (2015).

    Google Scholar 

  71. 71.

    Strain, E. & Johnson, C. R. Competition between an invasive urchin and commercially fished abalone: effect on body condition, reproduction and survivorship. Mar. Ecol. Prog. Ser. 377, 169–182 (2009).

    Google Scholar 

  72. 72.

    Bradley, B. A. et al. Disentangling the abundance-impact relationship for invasive species. Proc. Natl Acad. Sci. USA 116, 9919–9924 (2019).

    CAS  Google Scholar 

  73. 73.

    Blackburn, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850 (2014).

    Google Scholar 

  74. 74.

    Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arctic Antarct. Alp. Res. 46, 829–840 (2014).

    Google Scholar 

  75. 75.

    Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Google Scholar 

  76. 76.

    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    CAS  Google Scholar 

  77. 77.

    Angelo, C. L. & Daehler, C. C. Upward expansion of fire-adapted grasses along a warming tropical elevation gradient. Ecography 36, 551–559 (2013).

    Google Scholar 

  78. 78.

    Filbee-Dexter, K. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).

    Google Scholar 

  79. 79.

    Demopoulos, A. & Smith, C. Invasive mangroves alter macrofaunal community structure and facilitate opportunistic exotics. Mar. Ecol. Prog. Ser. 404, 51–67 (2010).

    CAS  Google Scholar 

  80. 80.

    Osland, M. J., Enwright, N., Day, R. H. & Doyle, T. W. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob. Chang. Biol. 19, 1482–1494 (2013).

    Google Scholar 

  81. 81.

    Bolser, R. C. & Hay, M. E. Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology 77, 2269–2286 (1996).

    Google Scholar 

  82. 82.

    Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl Acad. Sci. USA 105, 16201–16206 (2008).

    CAS  Google Scholar 

  83. 83.

    Borer, E. T. et al. Global biogeography of autotroph chemistry: is insolation a driving force? Oikos 122, 1121–1130 (2013).

    CAS  Google Scholar 

  84. 84.

    Silliman, B. R. et al. Consumer fronts, global change, and runaway collapse in ecosystems. Annu. Rev. Ecol. Evol. Syst. 44, 503–538 (2013).

    Google Scholar 

  85. 85.

    Campbell, A. H., Vergés, A. & Steinberg, P. D. Demographic consequences of disease in a habitat-forming seaweed and impacts on interactions between natural enemies. Ecology 95, 142–152 (2014).

    Google Scholar 

  86. 86.

    Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    Google Scholar 

  87. 87.

    Hawkins, C. L. et al. Framework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT). Divers. Distrib. 21, 1360–1363 (2015).

    Google Scholar 

  88. 88.

    Scheffers, B. R. & Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 9, 581–586 (2019).

    Google Scholar 

  89. 89.

    Stein, B. A. et al. Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 11, 502–510 (2013).

    Google Scholar 

  90. 90.

    Kreyling, J. et al. Assisted colonization: a question of focal units and recipient localities. Restor. Ecol. 19, 433–440 (2011).

    Google Scholar 

  91. 91.

    Filbee-Dexter, K. et al. Ecological surprise: concept, synthesis, and social dimensions. Ecosphere 8, e02005 (2017).

    Google Scholar 

  92. 92.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).

    Google Scholar 

  93. 93.

    Richardson, D. M. et al. Multidimensional evaluation of managed relocation. Proc. Natl Acad. Sci. USA 106, 9721–9724 (2009).

    CAS  Google Scholar 

  94. 94.

    Vilà, M. et al. A review of impact assessment protocols of non-native plants. Biol. Invasions 21, 709–723 (2019).

    Google Scholar 

  95. 95.

    Garibaldi, A. & Turner, N. Cultural keystone species: implications for ecological conservation and restoration. Ecol. Soc. 9, 1 (2004).

    Google Scholar 

  96. 96.

    Enquist, C. A. F. et al. Foundations of translational ecology. Front. Ecol. Environ. 15, 541–550 (2017).

    Google Scholar 

  97. 97.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS  Google Scholar 

  98. 98.

    Ibáñez, I., Silander, J. A. Jr, Allen, J. M., Treanor, S. A. & Wilson, A. Identifying hotspots for plant invasions and forecasting focal points of further spread. J. Appl. Ecol. 46, 1219–1228 (2009).

    Google Scholar 

  99. 99.

    Allen, J. M. & Bradley, B. A. Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. Biol. Conserv. 203, 306–312 (2016).

    Google Scholar 

  100. 100.

    Pereyra, P. J. Rethinking the native range concept. Conserv. Biol. 34, 373–377 (2019).

    Google Scholar 

  101. 101.

    Raymond, C. M. et al. Integrating local and scientific knowledge for environmental management. J. Environ. Manage. 91, 1766–1777 (2010).

    Google Scholar 

  102. 102.

    Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).

    Google Scholar 

  103. 103.

    Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).

    Google Scholar 

  104. 104.

    Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).

    CAS  Google Scholar 

  105. 105.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS  Google Scholar 

  106. 106.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    CAS  Google Scholar 

  107. 107.

    Wilmers, C. C. & Getz, W. M. Gray wolves as climate change buffers in Yellowstone. PLoS Biol. 3, e92 (2005).

    Google Scholar 

  108. 108.

    Wilmers, C. C. & Post, E. Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Glob. Chang. Biol. 12, 403–409 (2006).

    Google Scholar 

  109. 109.

    Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci 1, 117–141 (2009).

    Google Scholar 

  110. 110.

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Google Scholar 

  111. 111.

    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).

    Google Scholar 

  112. 112.

    Gallina, S. & Lopez Arevalo, H. Odocoileus virginianus (The IUCN Red List of Threatened Species, accessed 7 March 2020); https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T42394A22162580.en

  113. 113.

    Hundertmark, K. Alces alces (The IUCN Red List of Threatened Species 2016, accessed 7 March 2020); https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T56003281A22157381.en

  114. 114.

    Gunn, A. Rangifer tarandus (The IUCN Red List of Threatened Species 2016, accessed 7 March 2020); https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T29742A22167140.en

Download references

Acknowledgements

This work was initiated at a working group led by C.J.B.S., B.A.B., A.E.B., and R.E. and was supported by the Albert and Elaine Borchard Foundation. We thank R. Whitlock for his insight during initial discussions, V. Pasquarella for her comments on an early draft, and C. Millar and J. McMullen who provided valuable feedback. Funding for this project was provided in the form of a University of Michigan catalyst grant to I.I., and from the National Institute of Food and Agriculture, U.S. Department of Agriculture, the Massachusetts Agricultural Experiment Station, the U.S. Geological Survey Northeast Climate Adaptation Science Center and the Department of Environmental Conservation under Project Number MAS00033 to B.A.B. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Affiliations

Authors

Contributions

T.L.M., C.J.B.S. and P.D.W. conceptualized the idea for this Review independently. T.L.M. and P.D.W. proposed the project, led breakout sessions during the working group and managed the project throughout its development, including writing, reviewing and editing all manuscript versions. B.A.B. and C.J.B.S. provided invaluable feedback throughout the project and contributed though mentoring and supervision, as well as writing and in-depth review. B.A.B., B.B.L., T.L.M. and P.D.W. created figure visualizations. J.M.A., E.M.B., D.M.B., J.S.D., R.E., E.J.F., D.E.G., I.I., B.B.L. and M.V. contributed equally to writing and providing feedback.

Corresponding author

Correspondence to Toni Lyn Morelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks I-Ching Chen, Jorge E. Ramos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wallingford, P.D., Morelli, T.L., Allen, J.M. et al. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nat. Clim. Chang. 10, 398–405 (2020). https://doi.org/10.1038/s41558-020-0768-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing