Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Energy budget constraints on historical radiative forcing


Radiative forcing is a fundamental quantity for understanding anthropogenic and natural drivers of past and future climate change1, yet significant uncertainty remains in our quantification of radiative forcing and its model representation2,3,4. Here we use instrumental measurements of historical global mean surface temperature change and Earth’s total heat uptake, alongside estimates of the Earth’s radiative response, to provide a top-down energy budget constraint on historical (1861–1880 to near-present) effective radiative forcing of 2.3 W m−2 (1.7–3.0W m−2; 5–95% confidence interval). This represents a near 40% reduction in the 5–95% uncertainty range assessed by the IPCC Fifth Assessment Report2. Although precise estimates of effective radiative forcing in models do not widely exist, our results suggest that the effective radiative forcing may be too small in as many as one-third of climate models in the fifth phase of the Coupled Model Intercomparison Project. Improving model representation of radiative forcing should be a priority for modelling centres. This will reduce uncertainties in climate projections that have persisted for decades4,5.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Historical ERF derived from an energy budget constraint.

Data availability

The Cowtan and Way20 global annual mean temperature anomaly dataset was accessed via All other data supporting the findings of this study are provided and/or referenced within this paper.

Code availability

The code used to produce the energy budget constraint and Fig. 1 is available via the following online repository: (ref. 51).


  1. 1.

    Shine, K. P. & Forster, P. M. The effect of human activity on radiative forcing of climate change: a review of recent developments. Glob. Planet. Change 20, 205–225 (1999).

    Google Scholar 

  2. 2.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2013).

  3. 3.

    Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. 118, 1139–1150 (2013).

    Google Scholar 

  4. 4.

    Soden, B. J., Collins, W. D. & Feldman, D. R. Reducing uncertainties in climate models. Science 361, 326–327 (2018).

  5. 5.

    Pincus, R., Forster, P. M. & Stevens, B. The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geosci. Model Dev. 9, 3447–3460 (2016).

    Google Scholar 

  6. 6.

    National Research Council Radiative Forcing of Climate Change (National Academies, 2005).

  7. 7.

    Sherwood, S. C. et al. Adjustments in the forcing–feedback framework for understanding climate change. Bull. Am. Meteorol. Soc. 96, 217–228 (2015).

    Google Scholar 

  8. 8.

    Gregory, J. M., Stouffer, R. J., Raper, S. C., Stott, P. A. & Rayner, N. A. An observationally based estimate of the climate sensitivity. J. Clim. 15, 3117–3121 (2002).

    Google Scholar 

  9. 9.

    Otto., A. et al. Energy budget constraints on climate response. Nat. Geosci. 6, 415–416 (2013).

    CAS  Google Scholar 

  10. 10.

    Forster, P. M. & Taylor, K. E. Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J. Clim. 19, 6181–6194 (2006).

    Google Scholar 

  11. 11.

    Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Clim. 28, 1630–1648 (2015).

    Google Scholar 

  12. 12.

    Andrews, T. & Webb, M. J. The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical pacific warming. J. Clim. 31, 641–654 (2018).

    Google Scholar 

  13. 13.

    Gregory, J. M. & Andrews, T. Variation in climate sensitivity and feedback parameters during the historical period. Geophys. Res. Lett. 43, 3911–3920 (2016).

    Google Scholar 

  14. 14.

    Zhou., C., Zelinka, M. D. & Klein, S. A. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016).

    CAS  Google Scholar 

  15. 15.

    Xie, S. P., Kosaka, Y. & Okumura, Y. M. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus. Nat. Geosci. 9, 29–33 (2016).

    CAS  Google Scholar 

  16. 16.

    Dong, Y., Proistosescu, C., Armour, K. C. & Battisti, D. S. Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: the preeminence of the western Pacific. J. Clim. 32, 5471–5491 (2019).

    Google Scholar 

  17. 17.

    Forest, C. E. et al. Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295, 113–117 (2002).

    CAS  Google Scholar 

  18. 18.

    Richardson, M., Cowtan, K., Hawkins, E. & Stolpe, M. B. Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Clim. Change 6, 931–935 (2016).

    Google Scholar 

  19. 19.

    Johnson, G. C., Lyman, J. M. & Loeb, N. G. Improving estimates of Earth’s energy imbalance. Nat. Clim. Change 6, 639–640 (2016).

    Google Scholar 

  20. 20.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Google Scholar 

  21. 21.

    Forster, P. M. Inference of climate sensitivity from analysis of Earth’s energy budget. Annu. Rev. Earth Planet. Sci. 44, 85–106 (2016).

    CAS  Google Scholar 

  22. 22.

    Andrews, T. et al. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett. 45, 8490–8499 (2018).

    Google Scholar 

  23. 23.

    Hurrell, J. et al. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Clim. 21, 5145–5153 (2008).

    Google Scholar 

  24. 24.

    Allan, R. P. et al. Changes in global net radiative imbalance 1985-2012. Geophys. Res. Lett. 41, 5588–5597 (2014).

    Google Scholar 

  25. 25.

    Smith, D. M. et al. Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett. 42, 1205–1213 (2015).

    Google Scholar 

  26. 26.

    Ceppi, P. & Gregory, J. M. Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl Acad. Sci. USA 114, 13126–13131 (2017).

  27. 27.

    Stevens, B. Rethinking the lower bound on aerosol radiative forcing. J. Clim. 28, 4794–4819 (2015).

    Google Scholar 

  28. 28.

    Sato, Y. et al. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nat. Commun. 9, 985 (2018).

    Google Scholar 

  29. 29.

    Zelinka, M. D., Andrews, T., Forster, P. M. & Taylor, K. E. Quantifying components of aerosol–cloud–radiation interactions in climate models. J. Geophys. Res. 119, 7599–7615 (2014).

    Google Scholar 

  30. 30.

    Toll, V., Christensen, M., Gassó, S. & Bellouin, N. Volcano and ship tracks indicate excessive aerosol‐induced cloud water increases in a climate model. Geophys. Res. Lett. 44, 12492–12500 (2017).

    Google Scholar 

  31. 31.

    Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).

    CAS  Google Scholar 

  32. 32.

    Andrews, T., Betts, R. A., Booth, B. B. B., Jones, C. D. & Jones, G. S. Effective radiative forcing from historical land-use change. Clim. Dynam. 48, 3489–3505 (2017).

  33. 33.

    Golaz, J. C. et al. The DOE E3SM coupled model version 1: overview and evaluation at standard resolution. J. Adv. Model. Earth Syst. 11, 2089–2129 (2019).

    Google Scholar 

  34. 34.

    Kiehl, J. T. Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett. 34, L22710 (2007).

    Google Scholar 

  35. 35.

    Hegerl, G. & Zwiers, F. Use of models in detection and attribution of climate change. WIREs Clim. Change 2, 570–591 (2011).

    Google Scholar 

  36. 36.

    Cowtan, K. et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42, 6526–6534 (2015).

    Google Scholar 

  37. 37.

    Armour, K. C. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Clim. Change 7, 331–335 (2017).

    Google Scholar 

  38. 38.

    Lewis, N. & Curry, J. The impact of recent forcing and ocean heat uptake data on estimates of climate sensitivity. J. Clim. 31, 6051–6071 (2018).

    Google Scholar 

  39. 39.

    Gregory, J. M. Long‐term effect of volcanic forcing on ocean heat content. Geophys. Res. Lett. 37, L22701 (2010).

    Google Scholar 

  40. 40.

    Dessler, A., Mauritsen, T. & Stevens, B. J. The influence of internal variability on Earth’s energy balance framework and implications for estimating climate sensitivity. Atmos. Chem. Phys. 18, 5147–5155 (2018).

    CAS  Google Scholar 

  41. 41.

    Kang, S. M. & Xie, S. Dependence of climate response on meridional structure of external thermal forcing. J. Clim. 27, 5593–5600 (2014).

    Google Scholar 

  42. 42.

    Rose, B. E. J., Armour, K. C., Battisti, D. S., Feldl, N. & Koll, D. D. B. The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett. 41, 1071–1078 (2014).

    Google Scholar 

  43. 43.

    Rugenstein, M. A. A., Caldeira, K. & Knutti, R. Dependence of global radiative feedbacks on evolving patterns of surface heat fluxes. Geophys. Res. Lett. 43, 9877–9885 (2016).

    Google Scholar 

  44. 44.

    Marvel, K., Pincus, R., Schmidt, G. A. & Miller, R. L. Internal variability and disequilibrium confound estimates of climate sensitivity from observations. Geophys. Res. Lett. 45, 1595–1601 (2018).

    Google Scholar 

  45. 45.

    Gregory, J. M., Andrews, T., Ceppi, P., Mauritsen, T. & Webb, M. J. How accurately can the climate sensitivity to CO2 be estimated from historical climate change? Clim. Dynam. 54, 129–157 (2019).

  46. 46.

    Dessler, A. E. & Forster, P. M. An estimate of equilibrium climate sensitivity from interannual variability. J. Geophys. Res. 123, 8634–8645 (2018).

    Google Scholar 

  47. 47.

    Schurer, A. P. et al. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nat. Clim. Change 7, 563–567 (2017).

    Google Scholar 

  48. 48.

    Hawkins et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98, 1841–1856 (2017).

    Google Scholar 

  49. 49.

    Titchner, H. A. & Rayner, N. A. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2:1. Sea ice concentrations. J. Geophys. Res. 119, 2864–2889 (2014).

    Google Scholar 

  50. 50.

    Schneider, A., Flanner, M. & Perket, J. Multidecadal variability in surface albedo feedback across CMIP5 models. Geophys. Res. Lett. 45, 1972–1980 (2018).

    Google Scholar 

  51. 51.

    Andrews, T. Release of Andrews and Forster (2020, NCC) Code. Zenodo (2020).

Download references


T.A. was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. P.M.F. was supported by NERC SMURPHS project NE/N006054/1. Both T.A. and P.M.F. were supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820829 (CONSTRAIN project). We thank M. Ringer and J. Gregory for useful discussions.

Author information




T.A. and P.M.F. conceived the study. T.A. performed the analysis and wrote the manuscript, with comments from P.M.F.

Corresponding author

Correspondence to Timothy Andrews.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andrews, T., Forster, P.M. Energy budget constraints on historical radiative forcing. Nat. Clim. Chang. 10, 313–316 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing