Antarctic iceberg impacts on future Southern Hemisphere climate

Abstract

Future iceberg and meltwater discharge from the Antarctic ice sheet (AIS) could substantially exceed present levels, with strong implications for future climate and sea levels. Recent climate model simulations on the impact of a rapid disintegration of the AIS on climate have applied idealized freshwater forcing scenarios1,2 rather than the more realistic iceberg forcing. Here we use a coupled climate–iceberg model to determine the climatic effects of combined iceberg latent heat of fusion and freshwater forcing. The iceberg forcing is derived from an ensemble of future simulations conducted using the Penn State ice-sheet model3. In agreement with previous studies, the simulated AIS meltwater forcing causes a substantial delay in greenhouse warming in the Southern Hemisphere and activates a transient positive feedback between surface freshening, subsurface warming and ice-sheet/shelf melting, which can last for about 100 years and may contribute to an accelerated ice loss around Antarctica. However, accounting further for the oceanic heat loss due to iceberg melting considerably increases the surface cooling effect and reduces the subsurface temperature feedback amplitude. Our findings document the importance of considering realistic climate–ice sheet–iceberg coupling for future climate and sea-level projections.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Meltwater forcing scenarios and associated AIS sea-level contribution.
Fig. 2: Uncertainty of global and Southern Hemisphere temperature trajectories related to AIS meltwater discharge.
Fig. 3: Impact of MWF on SAT.
Fig. 4: Impact of icebergs on SAT and subsurface ocean temperatures.
Fig. 5: Impact of iceberg processes on ice–ocean feedback.

Data availability

The data that support the findings of this study are available from the corresponding author on request.

Code availability

The numerical model codes that support the findings of this study are available from the corresponding author on request.

References

  1. 1.

    Menviel, L., Timmermann, A., Timm, O. E. & Mouchet, A. Climate and biogeochemical response to a rapid melting of the West Antarctic Ice Sheet during interglacials and implications for future climate. Paleoceanography 25, PA4231 (2010).

  2. 2.

    Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

  3. 3.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

  4. 4.

    Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).

  5. 5.

    Edwards, L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).

  6. 6.

    Golledge, N. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

  7. 7.

    Swingedouw, D. et al. Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophys. Res. Lett. 35, L17705 (2008).

  8. 8.

    Vizcaino, M., Mikolajewicz, U., Jungclaus, J. & Schurgers, G. Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim. Dynam. 34, 301–324 (2010).

  9. 9.

    Ma, H. & Wu, L. Global teleconnections in response to freshening over the Antarctic Ocean. J. Clim. 24, 1071–1088 (2011).

  10. 10.

    Bintanja, R., Van Oldenborgh, G., Drijfhout, S., Wouters, B. & Katsman, C. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

  11. 11.

    Green, J. A. M. & Schmittner, A. Climatic consequences of a pine glacial collapse. J. Clim. 28, 9221–9234 (2015).

  12. 12.

    Fogwill, C., Phipps, S., Turney, C. & Golledge, N. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth’s Future 3, 317–329 (2015).

  13. 13.

    Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).

  14. 14.

    Bakker, P., Clark, P. U., Golledge, N. R., Schmittner, A. & Weber, M. E. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge. Nature 541, 72–76 (2017).

  15. 15.

    Sweet, W., Horton, R., Kopp, R., LeGrande, A. & Romanou, A. in Climate Science Special Report: Fourth National Climate Assessment Vol. I (eds Wuebbles, D. J. et al.) 333–363 (US Global Change Research Program, 2017).

  16. 16.

    Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

  17. 17.

    Jongma, J. I., Driesschaert, E., Fichefet, T., Goosse, H. & Renssen, H. The effect of dynamic– thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Model. 26, 104–113 (2009).

  18. 18.

    Stern, A., Adcroft, A. & Sergienko, O. The effects of Antarctic iceberg calving-size distribution in a global climate model. J. Geophys. Res. Oceans 121, 5773–5788 (2016).

  19. 19.

    Rackow, T. et al. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. J. Geophys. Res. Oceans 122, 3170–3190 (2017).

  20. 20.

    Tournadre, J., Bouhier, N., Girard-Ardhuin, F. & Remy, F. Antarctic icebergs distributions 1992–2014. J. Geophys. Res. Oceans 121, 327–349 (2016).

  21. 21.

    Merino, N. et al. Impact of increasing Antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean. J. Clim. 20, 436–448 (2007).

  22. 22.

    Stouffer, R. J., Seidov, D. & Haupt, B. J. Climate response to sources of freshwater: North Atlantic versus the Southern Ocean. J. Clim. 20, 436–448 (2007).

  23. 23.

    Weaver, A. J., Saenko, O. A., Clark, P. U. & Mirtovica, J. X. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299, 1709–1713 (2003).

  24. 24.

    McCreary, J. P., Furue, R., Schloesser, F., Burkhardt, T. W. & Nonaka, M. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity. Prog. Oceanogr. 143, 46–81 (2016).

  25. 25.

    Stocker, T. F. The seesaw effect. Science 282, 61–62 (1998).

  26. 26.

    Bozbiyik, A., Steinacher, M., Joos, F., Stocker, T. & Menviel, L. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation. Clim. Past 7, 319–338 (2011).

  27. 27.

    Menviel, L., Timmermann, A., Elison Timm, O. & Mouchet, L. Deconstructing the last glacial termination: the role of millennial and orbital-scale forcings. Quat. Sci. Rev. 30, 1155–1172 (2011).

  28. 28.

    Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014).

  29. 29.

    Jourdain, N. et al. Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J. Geophys. Res. Oceans 122, 2550–2573 (2017).

  30. 30.

    Kidston, J., Taschetto, A. S., Thompson, D. W. J. & England, M. H. The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys. Res. Lett. 38, L15804 (2011).

  31. 31.

    Hillenbrand, C.-D. et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature 547, 43–48 (2017).

  32. 32.

    Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of warm circumpolar deep water across the Antarctic shelf break. Geophys. Res. Lett. 42, 432–440 (2015).

  33. 33.

    Opsteegh, J., Haarsma, R., Selten, F. & Kattenberg, A. ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus A 50, 348–367 (1998).

  34. 34.

    Lim, G. H., Holton, J. R. & Wallace, J. M. The structure of the ageostrophic wind field in baroclinic waves. J. Atmos. Sci. 48, 1733–1745 (1991).

  35. 35.

    Goosse, H., Deleersnijder, E., Fichefet, T. & England, M. Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J. Geophys. Res. Oceans 104, 13681–13695 (1999).

  36. 36.

    Goosse, H. & Fichefet, T. Importance of ice–ocean interactions for the global ocean circulation: a model study. J. Geophys. Res. Oceans 104, 23337–23355 (1999).

  37. 37.

    Campin, J.-M. & Goosse, H. Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinates. Tellus A 51, 412–430 (1999).

  38. 38.

    Bigg, G. R., Wadley, M. R., Stevens, D. P. & Johnson, J. A. Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol. 26, 113–135 (1997).

  39. 39.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

  40. 40.

    Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).

  41. 41.

    Stuart, K. M. & Long, D. G. Iceberg size and orientation estimation using seawinds. Cold Reg. Sci. Technol. 69, 39–51 (2011).

  42. 42.

    Merino, N. et al. Antarctic icebergs melt over the Southern Ocean: climatology and impact on sea ice. Ocean Model. 104, 99–110 (2016).

  43. 43.

    Dickinson, H. C. & Osborne, N. S. Specific heat and heat of fusion of ice. J. Wash. Acad. Sci. 5, 338–340 (1915).

  44. 44.

    Giauque, W. & Stout, J. The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273 K. J. Am. Chem. Soc. 58, 1144–1150 (1936).

Download references

Acknowledgements

This research was supported by the National Science Foundation under award No. 1341394. A.T. is supported by the Institute for Basic Science, South Korea (Grant No. IBS-R028-D1).

Author information

F.S., A.T. and T.F designed the study. F.S conducted the model simulations and performed the analysis. F.S. and A.T. wrote the manuscript. T.F, R.D. and D.P. contributed to the writing of the manuscript. All authors contributed to interpreting the results and made substantial improvements to the manuscript.

Correspondence to Axel Timmermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Nicolas Jourdain and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark