Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tropical influence on the North Pacific Oscillation drives winter extremes in North America

Abstract

Since the turn of the twenty-first century, North America has experienced a number of record-breaking warm and cold winters. Thus, determining what causes these extremes is of great interest. Here we show that an eastward shift of the North Pacific Oscillation (NPO) in recent decades has caused its flip in phases to have more influence in causing abnormal warming and cooling over North America. Observations and climate models reveal the zonal displacement on an interdecadal timescale, and it is largely attributable to a Rossby wave response to the La Niña-like mean state of the tropical Pacific. This tropical influence affects the atmospheric mean baroclinicity over the extratropical North Pacific, which regulates the rate of available potential energy conversion that feeds the NPO. These results suggest that, as long as the NPO remains in the east, North America may continue to experience prolonged winter extremes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Atmospheric circulation patterns of record warm and cold winters.
Fig. 2: Observed and simulated horizontal structure of the NPO by decade and corresponding correlation with SAT.
Fig. 3: Changes in atmospheric mean baroclinicity and its relation to the zonal position of the NPO.
Fig. 4: Changes in the tropical Pacific mean state corresponding to zonal shift of the NPO.
Fig. 5: Changes in the mean atmospheric baroclinicity over the North Pacific relevant to the tropical Pacific mean state in the model.

Data availability

All data used in this study are publicly available. NCEP R1, NOAA ERSST v4, GPCP v2.3 and 20CR V2 data can be found at the NOAA/OAR/ESRL Physical Sciences Division website (http://www.esrl.noaa.gov/psd). CRU TS v4.00 is available at http://badc.nerc.ac.uk/data/cru. The model output from GFDL CM2.1 was downloaded from the website http://nomads.gfdl.noaa.gov.

References

  1. NOAA National Centers for Environmental Information State of the Climate: National Climate Report for February 2014 https://www.ncdc.noaa.gov/sotc/national/201402 (2014).

  2. NOAA National Centers for Environmental Information State of the Climate: National Climate Report for February 2012 https://www.ncdc.noaa.gov/sotc/summary-info/national/201202 (2012).

  3. Singh, D. et al. Recent amplification of the North American winter temperature dipole. J. Geophys. Res. Atmos. 121, 9911–9928 (2016).

    Article  Google Scholar 

  4. Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 4, 704–709 (2014).

    Article  Google Scholar 

  5. Baxter, S. & Nigam, S. Key role of the North Pacific Oscillation-West Pacific pattern in generating the extreme 2013/14 North American winter. J. Clim. 28, 8109–8117 (2015).

    Article  Google Scholar 

  6. Lee, M. Y., Hong, C. C. & Hsu, H. H. Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett. 42, 1612–1618 (2015).

    Article  Google Scholar 

  7. Walker, G. T. & Bliss, E. W. in Memoirs of the Royal Meteorological Society Vol. IV, 54–84 (Royal Meteorological Society, 1932).

  8. Rogers, J. The North Pacific Oscillation. Int. J. Climatol. 1, 39–57 (1981).

    Article  Google Scholar 

  9. Linkin, M. E. & Nigam, S. The North Pacific Oscillation–West Pacific teleconnection pattern: mature-phase structure and winter impacts. J. Clim. 21, 1979–1997 (2008).

    Article  Google Scholar 

  10. Furtado, J. C., Di Lorenzo, E., Anderson, B. T. & Schneider, N. Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Clim. Dyn. 39, 2833–2846 (2012).

    Article  Google Scholar 

  11. Liu, J., Curry, J. A., Wang, H., Song, M. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. USA 109, 4074–4079 (2012).

    Article  CAS  Google Scholar 

  12. Francis, J. A. Why are Arctic linkages to extreme weather still up in the air? Bull. Am. Meteorol. Soc. 98, 2551–2557 (2017).

    Article  Google Scholar 

  13. Sun, L., Deser, C. & Tomas, R. A. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Clim. 28, 7824–7845 (2015).

    Article  Google Scholar 

  14. Kug, J.-S. et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8, 759–762 (2015).

    Article  CAS  Google Scholar 

  15. Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, 1–6 (2012).

    Article  Google Scholar 

  16. Tang, Q., Zhang, X., Yang, X. & Francis, J. A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 8, 014036 (2013).

    Article  Google Scholar 

  17. Hartmann, D. L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 42, 1894–1902 (2015).

    Article  Google Scholar 

  18. Palmer, T. Record-breaking winters and global climate change. Science 344, 803–804 (2014).

    Article  CAS  Google Scholar 

  19. Watson, P. A. G., Weisheimer, A., Knight, J. R. & Palmer, T. N. The role of the tropical West Pacific in the extreme Northern Hemisphere winter of 2013/2014. J. Geophys. Res. Atmos. 121, 1698–1714 (2016).

    Article  Google Scholar 

  20. Sigmond, M. & Fyfe, J. C. Tropical Pacific impacts on cooling North American winters. Nat. Clim. Change 6, 970–974 (2016).

    Article  Google Scholar 

  21. Delworth, T. L. et al. GFDL’s CM2 global coupled climate models. Part I: formulation and and simulation characteristics. J. Clim. 19, 643–674 (2006).

    Article  Google Scholar 

  22. Schubert, S. D. The structure, energetics and evolution of the dominant frequency-dependent three-dimensional atmospheric modes. J. Atmos. Sci. 43, 1210–1237 (1986).

    Article  Google Scholar 

  23. Nakamura, H., Tanaka, M. & Wallace, J. M. Horizontal structure and energetics of Northern Hemisphere wintertime teleconnection patterns. J. Atmos. Sci. 44, 3377–3391 (1987).

    Article  Google Scholar 

  24. Simmons, A. J., Wallace, J. M. & Branstator, G. W. Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci. 40, 1363–1392 (1983).

    Article  Google Scholar 

  25. Kosaka, Y. & Nakamura, H. Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Q. J. R. Meteorol. Soc. 132, 2009–2030 (2006).

    Article  Google Scholar 

  26. Hoskins, B. J., James, I. N. & White, G. H. The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci. 40, 1595–1612 (1983).

    Article  Google Scholar 

  27. Robinson, W. A. The dynamics of low-frequency variability in a simple model of the global atmosphere. J. Atmos. Sci. 48, 429–441 (1991).

    Article  Google Scholar 

  28. Tanaka, S., Nishii, K. & Nakamura, H. Vertical structure and energetics of the Western Pacific teleconnection pattern. J. Clim. 29, 6597–6616 (2016).

    Article  Google Scholar 

  29. Kosaka, Y. & Nakamura, H. Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: the Pacific-Japan pattern. J. Clim. 23, 5085–5108 (2010).

    Article  Google Scholar 

  30. Sung, M.-K., Kim, B.-M., Baek, E.-H., Lim, Y.-K. & Kim, S.-J. Arctic-North Pacific coupled impacts on the late autumn cold in North America. Environ. Res. Lett. 11, 084016 (2016).

    Article  Google Scholar 

  31. Screen, J. A. & Francis, J. A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Clim. Change 6, 856–860 (2016).

    Article  Google Scholar 

  32. Brayshaw, D. J., Hoskins, B. & Blackburn, M. The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci. 65, 2842–2860 (2008).

    Article  Google Scholar 

  33. Sampe, T., Nakamura, H., Goto, A. & Ohfuchi, W. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Clim. 23, 1793–1814 (2010).

    Article  Google Scholar 

  34. Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 2–5 (2014).

    Article  Google Scholar 

  35. Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    Article  CAS  Google Scholar 

  36. Graversen, R. G., Mauritsen, T., Tjernstrom, M., Kallen, E. & Svensson, G. Vertical structure of recent Arctic warming. Nature 541, 53–56 (2008).

    Article  Google Scholar 

  37. Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–874 (2014).

    Article  CAS  Google Scholar 

  38. Choi, J., An, S. Il, Dewitte, B. & Hsieh, W. W. Interactive feedback between the tropical pacific decadal oscillation and ENSO in a coupled general circulation model. J. Clim. 22, 6597–6611 (2009).

    Article  Google Scholar 

  39. Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. & Trenberth, K. E. Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Clim. 26, 7298–7310 (2013).

    Article  Google Scholar 

  40. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  41. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  CAS  Google Scholar 

  42. Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1048 (2016).

    Article  Google Scholar 

  43. Lin, Y. H., Hipps, L. E., Wang, S. Y. S. & Yoon, J. H. Empirical and modeling analyses of the circulation influences on California precipitation deficits. Atmos. Sci. Lett. 18, 19–28 (2017).

    Article  Google Scholar 

  44. Anderson, B. T., Gianotti, D. J. S., Furtado, J. C. & Di Lorenzo, E. A decadal precession of atmospheric pressures over the North Pacific. Geophys. Res. Lett. 43, 3921–3927 (2016).

    Article  Google Scholar 

  45. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  46. Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

    Article  Google Scholar 

  47. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  48. Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article  Google Scholar 

  49. Compo, G. P. et al. The Twentieth Century Reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  50. Livezey, R. E. Analysis of Climate Variability (Springer, 1995).

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (grant NRF-2018R1A6A1A08025520). M.-K.S. was supported by NRF-2018R1D1A1B07044112 and B.-M.K. was supported by Korea Meteorological Administration Research and Development Program (KMI2018-03810). S.-W.Y. was supported by NRF-2009-C1AAA001-2009-0093042 and NRF-2018R1A5A1024958.

Author information

Authors and Affiliations

Authors

Contributions

M.-K.S. designed the research and performed analyses. H.-Y.J. assisted in analysing the data. M.-K.S. and C.Y. wrote the manuscript with discussion and feedback from B.-M.K., S.-W.Y. and Y.-S.C.

Corresponding authors

Correspondence to Baek-Min Kim or Changhyun Yoo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Climate Change thanks Stephen Baxter, Yu Kosaka and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sung, MK., Jang, HY., Kim, BM. et al. Tropical influence on the North Pacific Oscillation drives winter extremes in North America. Nat. Clim. Chang. 9, 413–418 (2019). https://doi.org/10.1038/s41558-019-0461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0461-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing