Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amazonian rainforest tree mortality driven by climate and functional traits


Tree mortality appears to be increasing in moist tropical forests1, with potentially important implications for global carbon and water cycles2. Little is known about the drivers of tree mortality in these diverse forests, partly because long-term data are lacking3. The relative importance of climatic factors and species functional traits as drivers of tropical tree mortality are evaluated using a unique dataset in which the survival of over 1,000 rainforest canopy trees from over 200 species has been monitored monthly over five decades in the Central Amazon. We found that drought, as well as heat, storms and extreme rainy years, increase tree mortality for at least two years after the climatic event. Specific functional groups (pioneers, softwoods and evergreens) had especially high mortality during extreme years. These results suggest that predicted climate change will lead to higher tree mortality rates, especially for short-lived species, which may result in faster carbon sequestration but lower carbon storage of tropical forests.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Annual tree mortality in 1,019 canopy trees.
Fig. 2: Monthly mortality and climate.
Fig. 3: Mortality across specific traits.
Fig. 4: Important drivers of Amazonian tree mortality.

Data availability

The mortality data that support the findings of this study are available from the corresponding author on reasonable request. Climate data from Reserva Floresta Adolpho Ducke are available from LBA ( on request. Tree trait data obtained for the current study from the TRY database and Global Wood Density Database can be requested from and

Code availability

The R code used to produce the Cox hazard model is available as Supplementary Code.


  1. 1.

    Mcdowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).

    Article  Google Scholar 

  2. 2.

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).

    Article  Google Scholar 

  5. 5.

    Mori, S. A. & Becker, P. Flooding affects survival of lecythidaceae in terra firme forest near Manaus, Brazil. Biotropica 23, 87–90 (1991).

    Article  Google Scholar 

  6. 6.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    Article  Google Scholar 

  7. 7.

    Nelson, B. W. et al. Forest disturbance by large blowdowns in the Brazilian Amazon. Ecology 75, 853–858 (1994).

    Article  Google Scholar 

  8. 8.

    Leitold, V. et al. El Niño drought increased canopy turnover in Amazon forests. New Phytol. 219, 959–971 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Bennett, A. C., Mcdowell, N. G., Allen, C. D. & Anderson-teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    Article  Google Scholar 

  10. 10.

    Laurance, W. F. et al. Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428, 171–175 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    Van der Sande, M. T. et al. Old‐growth neotropical forests are shifting in species and trait composition. Ecol. Monogr. 86, 228–243 (2016).

    Article  Google Scholar 

  12. 12.

    Chao, K. J. et al. Growth and wood density predict tree mortality in Amazon forests. J. Ecol. 96, 281–292 (2008).

    Article  Google Scholar 

  13. 13.

    Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Gloor, M. et al. Intensification of the Amazon hydrological cycle over the last two decades. Geophys. Res. Lett. 40, 1729–1733 (2013).

    Article  Google Scholar 

  15. 15.

    Phillips, O. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Phillips, O. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).

    Article  Google Scholar 

  17. 17.

    Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr 65, 419–439 (1995).

    Article  Google Scholar 

  18. 18.

    Nakagawa, M. et al. Impact of severe drought associated with the 1997–1998 El Niño in a tropical forest in Sarawak. J. Trop. Ecol. 16, 355–367 (2000).

    Article  Google Scholar 

  19. 19.

    Williamson, G. B. et al. Amazonian tree mortality during the 1997 El Nino drought. Conserv. Biol. 14, 1538–1542 (2000).

    Article  Google Scholar 

  20. 20.

    Negrón-Juárez, R. I. et al. Widespread Amazon forest tree mortality from a single cross-basin squall line event. Geophys. Res. Lett. 37, L16701 (2010).

    Article  Google Scholar 

  21. 21.

    Brokaw, N. V. L., Pickett, S. T. A. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York, USA. (1985).

  22. 22.

    Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).

    Article  Google Scholar 

  23. 23.

    Negrón-Juárez, R. et al. Windthrow variability in central Amazonia. Atmosphere 8, 28 (2017).

    Article  Google Scholar 

  24. 24.

    Chambers, J. Q. et al. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc. Natl Acad. Sci. USA 110, 3949–3954 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Mueller, R. C. et al. Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J. Ecol. 93, 1085–1093 (2005).

    Article  Google Scholar 

  26. 26.

    Van Gelder, H. A., Poorter, L. & Sterck, F. J. Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol. 171, 367–378 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).

    Article  Google Scholar 

  29. 29.

    Fontes, C. G., Chambers, J. Q. & Higuchi, N. Revealing the causes and temporal distribution of tree mortality in Central Amazonia. For. Ecol. Manage. 424, 177–183 (2018).

    Article  Google Scholar 

  30. 30.

    Clark, D. B., Clark, D. A. & Oberbauer, S. F. Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob. Change Biol. 16, 747–759 (2010).

    Article  Google Scholar 

  31. 31.

    Anderegg, W. R. L. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Marengo, J. A., Tomasella, J., Soares, W. R., Alves, L. M. & Nobre, C. A. Extreme climatic events in the Amazon Basin. Theor. Appl. Climatol. 107, 73–85 (2012).

    Article  Google Scholar 

  33. 33.

    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).

    Article  Google Scholar 

  34. 34.

    Nepstad, D. C. et al. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    Article  Google Scholar 

  35. 35.

    Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. 93, 223–247 (2017).

    Article  Google Scholar 

  36. 36.

    Poorter, L., Castilho, C. V., Schietti, J., Oliveira, R. S. & Costa, F. R. C. Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New Phytol. 219, 109–121 (2018).

    Article  Google Scholar 

  37. 37.

    Ribeiro, J. E. L. S. et al. Flora da Reserva Ducke: Guia de Identificação das Plantas Vasculares de uma Floresta de Terra-Firme na Amazônia Central (INPA-DFID, 1999).

  38. 38.

    Chauvel, A., Lucas, Y. & Boulet, R. On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia 43, 234–241 (1987).

    Article  Google Scholar 

  39. 39.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).

    Article  Google Scholar 

  40. 40.

    Da Cruz Alencar, J., de Almeida, R. A. & Fernandes, N. P. Fenologia de especies florestais em floresta tropical úmida de terra firme na Amazônia Central.Acta Amaz. 9, 163–198 (1979).

    Article  Google Scholar 

  41. 41.

    Phillips, O. L. et al. Pattern and process in Amazon tree turnover, 1976–2001. Phil. Trans. R. Soc. B 359, 381–407 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Article  Google Scholar 

  43. 43.

    Zanne, A. E. et al. Global Wood Density Database (Dryad Digital Repository, 2009).

  44. 44.

    Nogueira, E. M., Nelson, B. W. & Fearnside, P. M. Wood density in dense forest in Central Amazonia, Brazil. For. Ecol. Manage. 208, 261–286 (2005).

    Article  Google Scholar 

  45. 45.

    Ferraz, I. D. K., Leal Filho, N., Imakawa, A. M., Varela, V. P. & Piña-Rodrigues, F. C. M. Características básicas para um agrupamento ecológico preliminar de espécies madeireiras da floresta de terra firme da Amazônia Central. Acta Amaz. 34, 621–633 (2004).

    Article  Google Scholar 

  46. 46.

    Dias, D. P. & Marenco, R. A. Tree growth, wood and bark water content of 28 Amazonian tree species in response to variations in rainfall and wood density. iForest 9, 445–451 (2016).

    Article  Google Scholar 

  47. 47.

    Singh, K. P. & Kushwaha, C. P. Deciduousness in tropical trees and its potential as indicator of climate change: a review. Ecol. Indic. 69, 699–706 (2016).

    Article  Google Scholar 

  48. 48.

    Ishida, A. et al. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand. Tree Physiol. 26, 643–656 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  50. 50.

    Lohbeck, M. et al. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94, 1211–1216 (2013).

    Article  Google Scholar 

  51. 51.

    Amaral, D. D., Viera, I. C. G., Salomão, R. P., Almeida, S. S de. & Jardim, M. A. G. Checklist da flora arb¢rea de remanescentes florestais da regiao metropolitana de Belém, Pará, Brasil.Bol. Mus. Para. Emilio Goeldi Ciênc. Nat 4, 231–289 (2009).

    Article  Google Scholar 

  52. 52.

    Lima, R. B. D. A. et al. Sucessão ecológica de um trecho de floresta ombrófila densa de terras baixas, Carauari, Amazonas. Pesqui. Florest. Bras 2011, 161–172 (2011).

    Article  Google Scholar 

  53. 53.

    Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Phil. Trans. R. Soc. B 359, 311–329 (2004).

    Article  Google Scholar 

  54. 54.

    Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).

    Article  Google Scholar 

  55. 55.

    Coelho, C. A. S. et al. Climate diagnostics of three major drought events in the Amazon and illustrations of their seasonal precipitation predictions. Meteorol. Appl. 19, 237–255 (2012).

    Article  Google Scholar 

  56. 56.

    Condit, R. et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J. Trop. Ecol. 20, 51–72 (2004).

    Article  Google Scholar 

  57. 57.

    Schöngart, J. & Junk, W. J. Forecasting the flood-pulse in Central Amazonia by ENSO-indices. J. Hydrol. 335, 124–132 (2007).

    Article  Google Scholar 

  58. 58.

    Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).

    CAS  Article  Google Scholar 

  59. 59.

    Asner, G. P., Townsend, A. R. & Braswell, B. H. Satellite observation of El Niño effects on Amazon forest phenology and productivity. Geophys. Res. Lett. 27, 981–984 (2000).

    Article  Google Scholar 

  60. 60.

    Saleska, S. R., Didan, K., Huete, A. R. & da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).

    CAS  Article  Google Scholar 

  61. 61.

    Wright, S. J. & Calderon, O. Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest. Ecol. Lett. 9, 35–44 (2006).

    CAS  Article  Google Scholar 

  62. 62.

    Chapman, C. A., Valenta, K., Bonnell, T. R., Brown, K. A. & Chapman, L. J. Solar radiation and ENSO predict fruiting phenology patterns in a 15-year record from Kibale National Park, Uganda. Biotropica 50, 384–395 (2018).

    Article  Google Scholar 

  63. 63.

    Barlow, J. & Peres, C. A. Ecological responses to El Nino-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Phil. Trans. R. Soc. 359, 367–380 (2004).

    Article  Google Scholar 

  64. 64.

    Flores, B. M., Piedade, M. T. F. & Nelson, B. W. Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecol. Divers. 7, 319–327 (2014).

    Article  Google Scholar 

  65. 65.

    Niño 3 SST Index (National Oceanic and Atmospheric Administration, NOAA, 2017);

  66. 66.

    Grimm, A. M., Barros, V. & Doyle, M. Climate variability in southern South America associated with El Niño and La Niña events. J. Clim. 13, 35–58 (2000).

    Article  Google Scholar 

  67. 67.

    North Atlantic Oscillation (NAO) (National Centers for Environmental Information, NOAA, 2017);

  68. 68.

    Sheil, D., Burslem, D. F. R. P. & Alder, D. The interpretation and misinterpretation of mortality rate measures. J. Ecol. 83, 331–333 (1995).

    Article  Google Scholar 

  69. 69.

    Therneau, T. A package for survival analysis in S. R package v.2.37-7 (CRAN, 2015);

  70. 70.

    Therneau, T. M. & Grambsch, P. M. in Modeling Survival data: Extending the Cox Model 39–77 (Springer, 2000).

  71. 71.

    Venables, W. N. & Ripley, B. D. in Modern Applied Statistics with S 271–300 (Springer, 2002).

Download references


The authors thank the researchers V. Campbell de Araújo and J. da Cruz Alencar for implementing the phenological research and selecting the trees at the beginning of the monitoring. Numerous grants have financed more than 50 years of research. We are grateful to the Coordination of Technology and Innovation (COTEI) and Forestry Research Group of Amazon Species at the National Institute of Amazonian Research for providing data, and to the field technicians J. Maciel, M. Azevedo, L. Reis, E. Nascimento and T. Nascimento for conducting field work. We also appreciate contributions from colleagues at the National Institute of Amazonian Research, the Forest Ecology and Management Group at Wageningen University and Research, and the Herbarium at the Royal Botanic Gardens, Kew. We are grateful for the contributions of B. Nelson and S. Saleska during the revision process. I.A. was supported by the PDSE programme (88881.1349/84/2016-01), from the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES).

Author information




I.A., D.N., A.B., L.P. and F.C. planned the study. A.B. and I.A. collected the data. I.A., D.N. and E.P. organized the datasets. L.H., I.A. and L.P. conducted the analyses. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Izabela Aleixo.

Additional information

Journal peer review information: Nature Climate Change thanks Emanuel Gloor, S. Joseph Wright and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–7 and Supplementary Code

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aleixo, I., Norris, D., Hemerik, L. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 9, 384–388 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing