Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Halving warming with idealized solar geoengineering moderates key climate hazards


Solar geoengineering (SG) has the potential to restore average surface temperatures by increasing planetary albedo1,2,3,4, but this could reduce precipitation5,6,7. Thus, although SG might reduce globally aggregated risks, it may increase climate risks for some regions8,9,10. Here, using the high-resolution forecast-oriented low ocean resolution (HiFLOR) model—which resolves tropical cyclones and has an improved representation of present-day precipitation extremes11,12alongside 12 models from the Geoengineering Model Intercomparison Project (GeoMIP), we analyse the fraction of locations that see their local climate change exacerbated or moderated by SG. Rather than restoring temperatures, we assume that SG is applied to halve the warming produced by doubling CO2 (half-SG). In HiFLOR, half-SG offsets most of the CO2-induced increase of simulated tropical cyclone intensity. Moreover, neither temperature, water availability, extreme temperature nor extreme precipitation are exacerbated under half-SG when averaged over any Intergovernmental Panel on Climate Change (IPCC) Special Report on Extremes (SREX) region. Indeed, for both extreme precipitation and water availability, less than 0.4% of the ice-free land surface sees exacerbation. Thus, while concerns about the inequality of solar geoengineering impacts are appropriate, the quantitative extent of inequality may be overstated13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The distribution of 2×CO2 and half-SG anomalies by land area and population.
Fig. 2: The joint distribution of 2×CO2 and half-SG anomalies for HiFLOR with results for the fraction of the land surface where half-SG exacerbates or moderates the climate trend.
Fig. 3: Regional distribution of where half-SG moderates or exacerbates the absolute magnitude of 2×CO2 anomalies in HiFLOR (for T, Tx, PE and Px) and the GeoMIP ensemble (PE and Px).

Data availability

The GeoMIP and CMIP5 data used in this study are available on the Earth System Grid (, the processed HiFLOR data used in this study will be made available upon request.


  1. 1.

    PSAC Restoring the Quality of Our Environment (President’s Science Advisory Committee, 1965).

  2. 2.

    Keith, D. W. & Dowlatabadi, H. A serious look at geoengineering. Eos Trans. Am. Geophys. Union 73, 289–292 (1992).

    Article  Google Scholar 

  3. 3.

    Schelling, T. C. in Changing Climate (eds Nierenberg, W. A. et al.) (National Academy of Sciences, Washington DC, 1983).

  4. 4.

    Teller, E., Wood, L. & Hyde, R. Global warming and ice ages: I. Prospects for physics-based modulation of global change. Int. Symp. Planetary E mergencies vol. 29 (1997).

  5. 5.

    Tilmes, S. et al. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118, 11036–11058 (2013).

    Article  Google Scholar 

  6. 6.

    Lunt, D. J., Ridgwell, A., Valdes, P. J. & Seale, A. ‘Sunshade World’: a fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys. Res. Lett. 35, L12710 (2008).

    Article  Google Scholar 

  7. 7.

    Govindasamy, B. & Caldeira, K. Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett. 27, 2141–2144 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Irvine, P. J., Ridgwell, A. J. & Lunt, D. J. Assessing the regional disparities in geoengineering impacts. Geophys. Res. Lett. 37, L18702 (2010).

    Article  Google Scholar 

  9. 9.

    Ricke, K. L., Moreno-Cruz, J. B. & Caldeira, K. Strategic incentives for climate geoengineering coalitions to exclude broad participation. Environ. Res. Lett. 8, 014021 (2013).

    Article  Google Scholar 

  10. 10.

    Crook, J., Jackson, L. S., Osprey, S. M. & Forster, P. M. A comparison of temperature and precipitation responses to different earth radiation management geoengineering schemes. J. Geophys. Res. Atmos. 120, 9352–9373 (2015).

    Article  Google Scholar 

  11. 11.

    van der Wiel, K. et al. The resolution dependence of contiguous US precipitation extremes in response to CO2 forcing. J. Clim. 29, 7991–8012 (2016).

    Article  Google Scholar 

  12. 12.

    Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Sci. Lett. 12, 162–167 (2011).

    Article  Google Scholar 

  13. 13.

    National Research Council. Climate Intervention: Reflecting Sunlight to Cool Earth (National Academies Press, Washington DC, 2015).

  14. 14.

    Irvine, P. J., Kravitz, B., Lawrence, M. G. & Muri, H. An overview of the Earth system science of solar geoengineering. Wiley Interdiscip. Rev. Clim. Change 6, 815–833 (2016).

    Google Scholar 

  15. 15.

    Boucher, O. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Uni. Press, Cambridge, 2013).

  16. 16.

    MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5 °C Paris target. Phil. Trans. R Soc. A 376, 20160454 (2018).

    Article  Google Scholar 

  17. 17.

    Jones, A. C. et al. Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering. Earth. Fut. 6, 230–251 (2018).

    Article  Google Scholar 

  18. 18.

    Robock, A., Oman, L. & Stenchikov, G. L. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. Atmos. 113, D16101 (2008).

    Article  Google Scholar 

  19. 19.

    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    MacMartin, D. G., Caldeira, K. & Keith, D. W. Solar geoengineering to limit the rate of temperature change. Philos. Trans. R. Soc. 372, 20140134 (2014).

    Article  Google Scholar 

  21. 21.

    Dai, Z., Weisenstein, D. K. & Keith, D. W. Tailoring meridional and seasonal radiative forcing by sulfate aerosol solar geoengineering. Geophys. Res. Lett. 45, 1030–1039 (2018).

    Article  Google Scholar 

  22. 22.

    Kravitz Ben et al. First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives. J. Geophys. Res. Atmospheres 122, 12616–12634 (2018).

    Article  Google Scholar 

  23. 23.

    Keith, D. W., Weisenstein, D. K., Dykema, J. A. & Keutsch, F. N. Stratospheric solar geoengineering without ozone loss. Proc. Natl Acad. Sci. USA 113, 14910–14914 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Murakami, H. et al. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 28, 9058–9079 (2015).

    Article  Google Scholar 

  25. 25.

    Bhatia, K., Vecchi, G., Murakami, H., Underwood, S. & Kossin, J. Projected response of tropical cyclone intensity and intensification in a global climate model. J. Clim. 31, 8281–8303 (2018).

    Article  Google Scholar 

  26. 26.

    Kravitz, B. et al. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118, 8320–8332 (2013).

    Article  Google Scholar 

  27. 27.

    Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    Curry, C. L. et al. A multi-model examination of climate extremes in an idealized geoengineering experiment. J. Geophys. Res. Atmospheres 119, 3900–3923 (2014).

    Article  Google Scholar 

  29. 29.

    Jones, A. C. et al. Impacts of hemispheric solar geoengineering on tropical cyclone frequency. Nat. Commun. 8, 1382 (2017).

    Article  Google Scholar 

  30. 30.

    Wang, Q., Moore, J. C. & Ji, D. A statistical examination of the effects of stratospheric sulfate geoengineering on tropical storm genesis. Atmospheric Chem. Phys. 18, 9173–9188 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Emanuel, K., Sundararajan, R. & Williams, J. Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull. Am. Meteorol. Soc. 89, 347–368 (2008).

    Article  Google Scholar 

  32. 32.

    Walsh, K. J. E. et al. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Change 7, 65–89 (2016).

    Article  Google Scholar 

  33. 33.

    Emanuel, K. A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl Acad. Sci. USA 110, 12219–12224 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Emanuel, K. A simple model of multiple climate regimes. J. Geophys. Res. Atmos. 107, ACL 4-1–ACL 4-10 (2002).

    Article  Google Scholar 

  35. 35.

    Jia, L. et al. Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Clim. 28, 2044–2062 (2014).

    Article  Google Scholar 

  36. 36.

    Delworth, T. L. et al. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 25, 2755–2781 (2012).

    Article  Google Scholar 

  37. 37.

    Delworth, T. L. et al. GFDL’s CM2 global coupled climate models. part I: formulation and simulation characteristics. J. Clim. 19, 643–674 (2006).

    Article  Google Scholar 

  38. 38.

    Gnanadesikan, A. et al. GFDL’s CM2 global coupled climate models. part II: the baseline ocean simulation. J. Clim. 19, 675–697 (2006).

    Article  Google Scholar 

  39. 39.

    Wittenberg, A. T., Rosati, A., Lau, N.-C. & Ploshay, J. J. GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J. Clim. 19, 698–722 (2006).

    Article  Google Scholar 

  40. 40.

    Putman, W. M. & Lin, S.-J. Finite-volume transport on various cubed-sphere grids. J. Comput. Phys. 227, 55–78 (2007).

    Article  Google Scholar 

  41. 41.

    Murakami, H. et al. Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution gfdl coupled climate model. J. Clim. 29, 7977–7989 (2016).

    Article  Google Scholar 

  42. 42.

    Zhang, W. et al. Improved simulation of tropical cyclone responses to enso in the western north pacific in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 29, 1391–1415 (2015).

    Article  Google Scholar 

  43. 43.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  44. 44.

    Emanuel, K., Ravela, S., Vivant, E. & Risi, C. A statistical deterministic approach to hurricane risk assessment. Bull. Am. Meteorol. Soc. 87, 299–314 (2006).

    Article  Google Scholar 

  45. 45.

    Moreno-Cruz, J. B., Ricke, K. L. & Keith, D. W. A simple model to account for regional inequalities in the effectiveness of solar radiation management. Clim. Change 110, 649–668 (2012).

    Article  Google Scholar 

  46. 46.

    Schaller, N., Sedláček, J. & Knutti, R. The asymmetry of the climate system’s response to solar forcing changes and its implications for geoengineering scenarios. J. Geophys. Res. Atmos. 119, 5171–5184 (2014).

    Article  Google Scholar 

  47. 47.

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article  Google Scholar 

  48. 48.

    Karl, T. R., Nicholls, N. & Ghazi, A. in Weather and Climate Extremes 3–7 (Springer, Dordrecht, 1999).

  49. 49.

    Jones, P. W. First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Weather Rev. 127, 2204–2210 (1999).

    Article  Google Scholar 

  50. 50.

    Irvine, P. J. et al. Key factors governing uncertainty in the response to sunshade geoengineering from a comparison of the GeoMIP ensemble and a perturbed parameter ensemble. J. Geophys. Res. Atmos. 119, 2013JD020716 (2014).

    Google Scholar 

  51. 51.

    Oldenborgh, G. Jvan et al. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 12, 124009 (2017).

    Article  Google Scholar 

  52. 52.

    Irvine, P. J., Sriver, R. L. & Keller, K. Tension between reducing sea-level rise and global warming through solar-radiation management. Nat. Clim. Change 2, 97–100 (2012).

    CAS  Article  Google Scholar 

  53. 53.

    Irvine, P. J., Keith, D. W. & Moore, J. Brief communication: understanding solar geoengineering’s potential to limit sea level rise requires attention from cryosphere experts. Cryosphere Discuss. 2018, 1–15 (2018).

    Article  Google Scholar 

  54. 54.

    GPWv4. Documentation for the Gridded Population of the World v.4 (NASA Socioeconomic Data and Applications Center, 2016).

  55. 55.

    Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation appendix 3.a (Intergovernmental Panel on Climate Change, 2012).

Download references


We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank all participants of the Geoengineering Model Intercomparison Project and their model development teams, CLIVAR/WCRP Working Group on Coupled Modeling for endorsing GeoMIP and the scientists managing the Earth System Grid data nodes who have assisted with making GeoMIP output available. The authors acknowledge the help of C. Curry who provided the extreme indices data for the GeoMIP ensemble. The authors thank M. Mostefaoui for her help in preparing the synthetic tropical cyclone data sets. The authors acknowledge R. Stanhope for help finalizing the figures. The authors thank D. Fahey and K. Caldeira for comments on the draft and L. Miller, G. Wagner and D. Kluger for helpful discussions on the statistical approach.

Author information




P.I., D.K. and G.V. conceived and designed the study. P.I. and D.K. developed the analysis approach. G.V. and L.W.H. performed the HiFLOR simulations and K.E. performed the downscaled tropical cyclone simulations. P.I. and J.H. analysed the main results. K.E. analysed the tropical cyclone results. P.I. and D.K. wrote the paper.

Corresponding author

Correspondence to Peter Irvine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Climate Change thanks Trude Storelvmo, Claudia Timmreck and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irvine, P., Emanuel, K., He, J. et al. Halving warming with idealized solar geoengineering moderates key climate hazards. Nat. Clim. Chang. 9, 295–299 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing