Meta-analyses of factors motivating climate change adaptation behaviour

Abstract

Adaptation behaviour is of critical importance to reduce or avoid negative impacts of climate change. Many studies have examined which factors motivate individuals to adapt. However, a comprehensive overview of the key motivating factors of various adaptation behaviours is lacking. Here, we conduct a series of meta-analyses using data from 106 studies (90 papers) conducted in 23 different countries to examine how 13 motivational factors relate to various adaptation behaviours. Descriptive norms, negative affect, perceived self-efficacy and outcome efficacy of adaptive actions were most strongly associated with adaptive behaviour. In contrast, knowledge and experience, which are often assumed to be key barriers to adaptation, were relatively weakly related to adaptation. Research has disproportionally focused on studying experience and risk perception, flooding and hurricanes, and preparedness behaviours, while other motivational factors, hazards and adaptive behaviours have been understudied. These results point to important avenues for future research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mean meta-analytical effect sizes.
Fig. 2: Types of climate-related hazards examined.
Fig. 3: Types of adaptive behaviours examined.

Data availability

The datasets generated and/or analysed during the current study are available in the Open Science Framework repository: https://doi.org/10.17605/OSF.IO/G2JC3.

References

  1. 1.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  2. 2.

    Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Stern, N. The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, Cambridge, 2007).

  4. 4.

    Takao, K. et al. Factors determining residents’ preparedness for floods in modern megalopolises: the case of the Tokai flood disaster in Japan. J. Risk Res. 7, 775–787 (2004).

    Article  Google Scholar 

  5. 5.

    Vulturius, G. et al. The relative importance of subjective and structural factors for individual adaptation to climate change by forest owners in Sweden.Reg. Environ. Change 18, 511–520 (2017).

    Article  Google Scholar 

  6. 6.

    Kievik, M. & Gutteling, J. M. Yes, we can: motivate Dutch citizens to engage in self-protective behavior with regard to flood risks. Nat. Hazards 59, 1475–1490 (2011).

    Article  Google Scholar 

  7. 7.

    Michie, S. et al. From theory-inspired to theory-based interventions: a protocol for developing and testing a methodology for linking behaviour change techniques to theoretical mechanisms of action. Ann. Behav. Med. 52, 501–512 (2018).

    Google Scholar 

  8. 8.

    Bamberg, S., Masson, T., Brewitt, K. & Nemetschek, N. Threat, coping and flood prevention—a meta-analysis. J. Environ. Psychol. 54, 116–126 (2017).

    Article  Google Scholar 

  9. 9.

    Rogers, R. W. in Social Psychophysiology: A Sourcebook (eds. Cacioppo, B. L. & Petty, L. L.) 153–176 (Guildford Press, New York, 1983).

  10. 10.

    Grothmann, T. & Patt, A. Adaptive capacity and human cognition: the process of individual adaptation to climate change. Glob. Environ. Change 15, 199–213 (2005).

    Article  Google Scholar 

  11. 11.

    Mulilis, J.-P. & Duval, T. S. The PrE model of coping and tornado preparedness: moderating effects of responsibility. J. Appl. Soc. Psychol. 27, 1750–1766 (1997).

    Article  Google Scholar 

  12. 12.

    Lindell, M. K. & Perry, R. W. The protective action decision model: theoretical modifications and additional evidence. Risk Anal. 32, 616–632 (2012).

    Article  Google Scholar 

  13. 13.

    Renn, O. The social amplification/attenuation of risk framework: application to climate change. Wiley Interdiscip. Rev. Clim. Chang. 2, 154–169 (2011).

    Article  Google Scholar 

  14. 14.

    Kasperson, R. E. et al. The social amplification of risk: a conceptual framework. Risk Anal. 8, 177–187 (1988).

    Article  Google Scholar 

  15. 15.

    Baan, P. J. A. & Klijn, F. Flood risk perception and implications for flood risk management in the Netherlands. Int. J. River Basin Manag. 2, 113–122 (2004).

    Article  Google Scholar 

  16. 16.

    Demuth, J. L., Morss, R. E., Lazo, J. K. & Trumbo, C. The effects of past hurricane experiences on evacuation intentions through risk perception and efficacy beliefs: a mediation analysis. Weather Clim. Soc. 8, 327–344 (2016).

    Article  Google Scholar 

  17. 17.

    Sharma, U. & Patt, A. Disaster warning response: the effects of different types of personal experience. Nat. Hazards 60, 409–423 (2012).

    Article  Google Scholar 

  18. 18.

    Reynaud, A., Aubert, C. & Nguyen, M. H. Living with floods: protective behaviours and risk perception of Vietnamese households. Geneva Pap. Risk Insur. Pract. 38, 547–579 (2013).

    Article  Google Scholar 

  19. 19.

    Altman, I. & Low, S. Place Attachment (Plenum, New York, 1992).

  20. 20.

    De Dominicis, S. et al. Vested interest and environmental risk communication: improving willingness to cope with impending disasters. J. Appl. Soc. Psychol. 44, 364–374 (2014).

    Article  Google Scholar 

  21. 21.

    Paton, D. Disaster preparedness: a social‐cognitive perspective. Disast. Prev. Manag. 12, 210–216 (2003).

    Article  Google Scholar 

  22. 22.

    Wachinger, G., Renn, O., Begg, C. & Kuhlicke, C. The risk perception paradox—implications for governance and communication of natural hazards. Risk Anal. 33, 1049–1065 (2013).

    Article  Google Scholar 

  23. 23.

    Weinstein, N. D., Rothman, A. J. & Nicolich, M. Use of correlational data to examine the effects of risk perceptions on precautionary behavior. Psychol. Health 13, 479–501 (1998).

    Article  Google Scholar 

  24. 24.

    Fox-Rogers, L., Devitt, C., O’Neill, E., Brereton, F. & Clinch, J. P. Is there really “nothing you can do”? Pathways to enhanced flood-risk preparedness. J. Hydrol. 543, 330–343 (2016).

    Article  Google Scholar 

  25. 25.

    Cialdini, R. B., Reno, R. R. & Kallgren, C. A. A focus theory of normative conduct: recycling the concept of norms to reduce littering in public places. J. Pers. Soc. Psychol. 58, 1015–1026 (1990).

    Article  Google Scholar 

  26. 26.

    Cialdini, R. B. Descriptive social norms as underappreciated sources of social control. Psychometrika 72, 263–268 (2007).

    Article  Google Scholar 

  27. 27.

    Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).

    Article  Google Scholar 

  28. 28.

    Bandura, A. Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 191–215 (1977).

    CAS  Article  Google Scholar 

  29. 29.

    Samaddar, S., Chatterjee, R., Misra, B. & Tatano, H. Outcome-expectancy and self-efficacy: reasons or results of flood preparedness intention? Int. J. Disaster Risk Reduct. 8, 91–99 (2014).

    Article  Google Scholar 

  30. 30.

    Bjørnebekk, G. Positive affect and negative affect as modulators of cognition and motivation: the rediscovery of affect in achievement goal theory. Scand. J. Educ. Res. 52, 153–170 (2008).

    Article  Google Scholar 

  31. 31.

    Fu, R. et al. Conducting quantitative synthesis when comparing medical interventions: AHRQ and the Effective Health Care Program. J. Clin. Epidemiol. 64, 1187–1197 (2011).

    Article  Google Scholar 

  32. 32.

    Terpstra, T. Emotions, trust, and perceived risk: affective and cognitive routes to flood preparedness behavior. Risk Anal. 31, 1658–1675 (2011).

    Article  Google Scholar 

  33. 33.

    Adger, W. N., Huq, S., Brown, K., Conway, D. & Hulme, M. Adaptation to climate change in the developing world. Prog. Dev. Stud. 3, 179–195 (2003).

    Article  Google Scholar 

  34. 34.

    De Wit, M. S., Van der Most, H., Gutteling, J. M. & Bočkatjova, M. in Safety, Reliability and Risk Analysis: Theories, Methods and Applications (eds Martorell, S., Guedes, C. & Barnett, J.) 1585–1593 (CRC Press, Boca Raton, 2008).

  35. 35.

    Sauerborn, R. & Ebi, K. Climate change and natural disasters: integrating science and practice to protect health. Glob. Health Action 5, 19295 (2012).

    Article  Google Scholar 

  36. 36.

    McCaffrey, S. Community wildfire preparedness: a global state-of-the-knowledge summary of social science research. Curr. For. Rep. 1, 81–90 (2015).

    Google Scholar 

  37. 37.

    Bubeck, P., Botzen, W. J. W. & Aerts, J. C. J. H. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal. 32, 1481–1495 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Poussin, J. K., Botzen, W. J. W. & Aerts, J. C. J. H. Factors of influence on flood damage mitigation behaviour by households. Environ. Sci. Pol. 40, 69–77 (2014).

    Article  Google Scholar 

  39. 39.

    Bonaiuto, M., Alves, S., De Dominicis, S. & Petruccelli, I. Place attachment and natural hazard risk: research review and agenda. J. Environ. Psychol. 48, 33–53 (2016).

    Article  Google Scholar 

  40. 40.

    Huang, S.-K., Lindell, M. K. & Prater, C. S. Who leaves and who stays? A review and statistical meta-analysis of hurricane evacuation studies. Environ. Behav. 48, 991–1029 (2016).

    Article  Google Scholar 

  41. 41.

    Kellens, W., Terpstra, T. & De Maeyer, P. Perception and communication of flood risks: a systematic review of empirical research. Risk Anal. 33, 24–49 (2013).

    Article  Google Scholar 

  42. 42.

    Taylor, A. L., Dessai, S. & Bruine de Bruin, W. Public perception of climate risk and adaptation in the UK: a review of the literature. Clim. Risk Manag. 4–5, 1–16 (2014).

    Google Scholar 

  43. 43.

    Thompson, R. R., Garfin, D. R. & Silver, R. C. Evacuation from natural disasters: a systematic review of the literature. Risk Anal. 37, 812–839 (2017).

    Article  Google Scholar 

  44. 44.

    Werg, J., Grothmann, T. & Schmidt, P. Assessing social capacity and vulnerability of private households to natural hazards: integrating psychological and governance factors. Nat. Hazards Earth Syst. Sci. 13, 1613–1628 (2013).

    Article  Google Scholar 

  45. 45.

    Koerth, J., Vafeidis, A. T. & Hinkel, J. Household-level coastal adaptation and its drivers: a systematic case study review. Risk Anal. 37, 629–646 (2017).

    Article  Google Scholar 

  46. 46.

    McCaffrey, S., Toman, E., Stidham, M. & Shindler, B. Social science research related to wildfire management: an overview of recent findings and future research needs. Int. J. Wildl. Fire 22, 15–24 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, Hoboken, 2009).

  48. 48.

    Van Duinen, R., Filatova, T., Geurts, P. & van der Veen, A. Coping with drought risk: empirical analysis of farmers’ drought adaptation in the south-west Netherlands. Reg. Environ. Change 15, 1081–1093 (2015).

    Article  Google Scholar 

  49. 49.

    Rupinski, M. T. & Dunlap, W. P. Approximating Pearson product–moment correlations from Kendall’s tau and Spearman’s rho. Educ. Psychol. Meas. 56, 419–429 (1996).

    Article  Google Scholar 

  50. 50.

    Peterson, R. A. & Brown, S. P. On the use of beta coefficients in meta-analysis. J. Appl. Psychol. 90, 175–181 (2005).

    Article  Google Scholar 

  51. 51.

    Rosenberg, M. S. A generalized formula for converting chi-square tests to effect sizes for meta-analysis. PLoS ONE 5, e10059 (2010).

    Article  Google Scholar 

  52. 52.

    Walker, D. A. JMASM9: converting Kendall’s tau for correlational or meta-analytic analyses. J. Mod. Appl. Stat. Methods 2, 525–530 (2003).

    Article  Google Scholar 

  53. 53.

    Field, A. P. & Gillett, R. How to do a meta-analysis. Br. J. Math. Stat. Psychol. 63, 665–694 (2010).

    Article  Google Scholar 

  54. 54.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  55. 55.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  56. 56.

    Hornsey, M. J., Harris, E. A., Bain, P. G. & Fielding, K. S. Meta-analyses of the determinants and outcomes of belief in climate change. Nat. Clim. Change 6, 622–626 (2016).

    Article  Google Scholar 

  57. 57.

    Kontopantelis, E. & Reeves, D. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study. Stat. Methods Med. Res. 21, 409–426 (2012).

    Article  Google Scholar 

  58. 58.

    Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).

    CAS  Article  Google Scholar 

  59. 59.

    Duval, S. & Tweedie, R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Soc. 95, 89–98 (2000).

    Google Scholar 

  60. 60.

    Viechtbauer, W. & Cheung, M. W.-L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 1, 112–125 (2010).

    Article  Google Scholar 

  61. 61.

    Paul, B. K. Factors affecting evacuation behavior: The case of 2007 cyclone Sidr, Bangladesh. Prof. Geogr. 64, 401–414 (2012).

    Article  Google Scholar 

  62. 62.

    Cahyanto, I. et al. Predicting information seeking regarding hurricane evacuation in the destination. Tour. Manag. 52, 264–275 (2016).

    Article  Google Scholar 

  63. 63.

    Baumann, D. D. & Sims, J. H. Flood insurance: Some determinants of adoption. Econ. Geogr. 54, 189–196 (1978).

    Article  Google Scholar 

  64. 64.

    McFarlane, B. L., McGee, T. K. & Faulkner, H. Complexity of homeowner wildfire risk mitigation: An integration of hazard theories. Int. J. Wildl. Fire 20, 921–931 (2011).

    Article  Google Scholar 

  65. 65.

    De Dominicis, S., Fornara, F., Ganucci Cancellieri, U., Twigger-Ross, C. & Bonaiuto, M. We are at risk, and so what? Place attachment, environmental risk perceptions and preventive coping behaviours. J. Environ. Psychol. 43, 66–78 (2015).

    Article  Google Scholar 

  66. 66.

    Stein, R. M., Dueñas-Osorio, L. & Subramanian, D. Who evacuates when hurricanes approach? The role of risk, information, and location. Soc. Sci. Q 91, 816–834 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the authors who corresponded with us to provide the necessary data for these meta-analyses or to clarify any questions about their work.

Author information

Affiliations

Authors

Contributions

A.M.v.V. and L.S. developed the idea for the paper and defined the scope for the meta-analyses. A.M.v.V. conducted the literature search and analysed the data. A.M.v.V. and L.S. wrote the paper.

Corresponding author

Correspondence to Anne M. van Valkengoed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–3

Reporting Summary

Supplementary Data 1

Contains an overview of all included studies, their sample sizes, the extracted data points for each analysis and references for all studies

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Valkengoed, A.M., Steg, L. Meta-analyses of factors motivating climate change adaptation behaviour. Nature Clim Change 9, 158–163 (2019). https://doi.org/10.1038/s41558-018-0371-y

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing