Towards operational predictions of the near-term climate


Near-term climate predictions — which operate on annual to decadal timescales — offer benefits for climate adaptation and resilience, and are thus important for society. Although skilful near-term predictions are now possible, particularly when coupled models are initialized from the current climate state (most importantly from the ocean), several scientific challenges remain, including gaps in understanding and modelling the underlying physical mechanisms. This Perspective discusses how these challenges can be overcome, outlining concrete steps towards the provision of operational near-term climate predictions. Progress in this endeavour will bridge the gap between current seasonal forecasts and century-scale climate change projections, allowing a seamless climate service delivery chain to be established.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Internal and external elements of a near-term prediction system.
Fig. 2: Near-term (decadal) forecast skill, compared with the skill of operational seasonal forecasts.


  1. 1.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

  2. 2.

    Meehl, G. A., Boer, G. J., Covey, C., Latif, M. & Stouffer, R. J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 81, 313–318 (2000).

    Google Scholar 

  3. 3.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  4. 4.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  5. 5.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  6. 6.

    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dynam. 37, 407–418 (2011).

    Google Scholar 

  7. 7.

    Murphy, J. M. et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, 768–772 (2004).

    CAS  Google Scholar 

  8. 8.

    Smith, D. M. et al. Improved surface temperature prediction for the coming decade from a global climate model. Science 317, 796–799 (2007).

    CAS  Google Scholar 

  9. 9.

    Smith, D. M. et al. Real-time multi-model decadal climate predictions. Clim. Dynam. 41, 2875–2888 (2013). This paper provides an experimental prediction of the upcoming decade. Detailed global maps of predicted temperature change are shown, as well as time series of global mean temperature and other climate indices. It also demonstrates the impact of forecast initialization with correct concurrent information.

    Google Scholar 

  10. 10.

    Meehl, G. A. et al. Decadal prediction: can it be skillful? Bull. Am. Meteorol. Soc. 90, 1467–1485 (2009). This paper articulates the need for decadal predictions as a bridge between seasonal prediction and long-term climate change projections. It discusses which phenomena contribute to forecast skill, what the remaining scientific issues (at the time of writing) are and how forecasts should be evaluated.

    Google Scholar 

  11. 11.

    Meehl, G. A. et al. Decadal climate prediction: an update from the trenches. Bull. Am. Meteorol. Soc. 95, 243–267 (2014).

    Google Scholar 

  12. 12.

    Goddard, L. From science to service. Science 353, 1366–1367 (2016).

    CAS  Google Scholar 

  13. 13.

    Hewitt, C. et al. Climate observations, climate modelling and climate services. Bull. Am. Meteorol. Soc.–0012.1 (2017).

    Article  Google Scholar 

  14. 14.

    Graham, R. J. et al. Long-range forecasting and the Global Framework for Climate Services. Clim. Res. 47, 47–55 (2011). This paper describes the infrastructure established by the World Meteorological Organization and the definition of operational standards to promote and support distribution of seasonal-to-interannual climate predictions. The paper also urges the development of decadal prediction capacity.

    Google Scholar 

  15. 15.

    A European Research and Innovation Roadmap for Climate Services (European Commission, Directorate-General for Research and Innovation, 2015).

  16. 16.

    Bellucci, A. et al. Advancements in decadal climate predictability: the role of nonoceanic drivers. Rev. Geophys. 53, 165–202 (2015).

    Google Scholar 

  17. 17.

    Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 953–1028 (IPCC, Cambridge Univ. Press, 2013). This chapter of IPCC AR4 describes in detail the process of decadal prediction and presents the results of testing the concept within the framework of CMIP5.

  18. 18.

    Gray, L. J. et al. Solar influences on climate. Rev. Geophys. (2010).

  19. 19.

    Thiéblemont, R., Matthes, K., Omrani, N.-E., Kodera, K. & Hansen, F. Solar forcing synchronizes decadal North Atlantic climate variability. Nat. Commun. 6, 8268 (2015).

    Google Scholar 

  20. 20.

    Timmreck, C., Pohlmann, H., Illing, S. & Kadow, C. The impact of stratospheric volcanic aerosol on decadal‐scale climate predictions. Geophys. Res. Lett. 43, 834–842 (2016).

    CAS  Google Scholar 

  21. 21.

    Zanchettin, D. et al. The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geosci. Model Dev. 9, 2701–2719 (2016).

    CAS  Google Scholar 

  22. 22.

    Scaife, A. A. et al. A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett. 40, 434–439 (2013).

    Google Scholar 

  23. 23.

    Dunstone, N. et al. Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci. 9, 809–814 (2016).

    CAS  Google Scholar 

  24. 24.

    Zanchettin, D. Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability. Current Clim. Change Rep. 3, 150–162 (2017).

    Google Scholar 

  25. 25.

    Cassou, C. et al. Decadal climate variability and predictability: challenges and opportunities. Bull. Am. Meteorol. Soc. 99, 479–490 (2018).

    Google Scholar 

  26. 26.

    Latif, M. & Keenlyside, N. S. A perspective on decadal climate variability and predictability. Deep Sea Res. Pt II 58, 1880–1894 (2011). This review paper describes the key phenomena associated with decadal and multidecadal variability that is internal to the climate system and their underlying mechanisms and predictability. It pays special attention to the climate variability associated with the Atlantic Meridional Overturning Circulation.

    Google Scholar 

  27. 27.

    Knight, J. R., Folland, C. K. & Scaife, A. A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33, L17706 (2006).

    Google Scholar 

  28. 28.

    Ting, M., Kushnir, Y., Seager, R. & Li, C. Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim. 22, 1469–1481 (2009).

    Google Scholar 

  29. 29.

    Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 33, L17712 (2006).

    Google Scholar 

  30. 30.

    Hátún, H. et al. Large bio-geographical shifts in the north-eastern Atlantic Ocean: from the subpolar gyre, via plankton, to blue whiting and pilot whales. Prog. Oceanogr. 80, 149–162 (2009).

    Google Scholar 

  31. 31.

    Hátún, H. et al. An inflated subpolar gyre blows life toward the northeastern Atlantic. Prog. Oceanogr. 147, 49–66 (2016).

    Google Scholar 

  32. 32.

    Zhang, L. & Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013).

    Google Scholar 

  33. 33.

    Ruprich-Robert, Y. et al. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 Global Coupled Models. J. Clim. 30, 2785–2810 (2017).

    Google Scholar 

  34. 34.

    Sheen, K. et al. Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales. Nat. Commun. 8, 14966 (2017).

    CAS  Google Scholar 

  35. 35.

    Yeager, S. & Robson, J. Recent progress in understanding and predicting Atlantic decadal climate variability. Curr. Clim. Change Rep. 3, 112–127 (2017). This is a recent evaluation of the feasibility of coupled model-based predictions of the decadal variability of North Atlantic SSTs. A discussion of the link between the surface phenomenon and variation in the Atlantic Meridional Overturning Circulation is included.

    Google Scholar 

  36. 36.

    Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M. & Mann, M. E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32, L20708 (2005).

    Google Scholar 

  37. 37.

    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Google Scholar 

  38. 38.

    Newman, M. et al. The Pacific Decadal Oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

    Google Scholar 

  39. 39.

    Dong, B. & Dai, A. The influence of the Interdecadal Pacific Oscillation on temperature and precipitation over the globe. Clim. Dynam. 45, 2667–2681 (2015).

    Google Scholar 

  40. 40.

    Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013). This is a pioneering paper that demonstrates that the long-term cooling of the eastern equatorial Pacific that began at the end of the twentieth century explains the slowdown in the rate of planetary warming that occurred in the following decade and a half.

    CAS  Google Scholar 

  41. 41.

    Meehl, G. A., Hu, A., Santer, B. D. & Xie, S.-P. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Clim. Change 6, 1005–1008 (2016).

    Google Scholar 

  42. 42.

    Han, W. et al. Indian Ocean decadal variability: a review. Bull. Am. Meteorol. Soc. 95, 1679–1703 (2014).

    Google Scholar 

  43. 43.

    Boer, G., Kharin, V. & Merryfield, W. Decadal predictability and forecast skill. Clim. Dynam. 41, 1817–1833 (2013).

    Google Scholar 

  44. 44.

    Doblas-Reyes, F. et al. Initialized near-term regional climate change prediction. Nat. Commun. 4, 1715 (2013).This paper provides a thorough evaluation of initialized decadal predictions skill, based on multi-model hindcasts, performed every five years between 1960 and 2005. It finds that globally, most of the forecast skill is attributable to the known external forcing in the past. Initial conditions can also provide skill in some parts of the world ocean.

    CAS  Google Scholar 

  45. 45.

    Matei, D. et al. Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J. Clim. 25, 8502–8523 (2012).

    Google Scholar 

  46. 46.

    Müller, W. A. et al. Forecast skill of multi‐year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys. Res. Lett. 39, L22707 (2012).

    Google Scholar 

  47. 47.

    Bellucci, A. et al. An assessment of a multi-model ensemble of decadal climate predictions. Clim. Dynam. 44, 2787–2806 (2015).

    Google Scholar 

  48. 48.

    Smith, D. M. et al. Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci. 3, 846–849 (2010).

    CAS  Google Scholar 

  49. 49.

    Eade, R., Hamilton, E., Smith, D. M., Graham, R. J. & Scaife, A. A. Forecasting the number of extreme daily events out to a decade ahead. J. Geophys. Res. Atmos. 117, D21110 (2012).This paper assesses the predictability of daily temperature and precipitation extremes over various timescales (up to a decade), using a state-of-the-art decadal prediction system. When assessing extreme temperature predictions for the season ahead, the study finds modest, but significant, skill over Europe and North America. However, when predictions of extremes over time intervals of 5 to 10 years are examined, the forecast skill is found to increase due to reduced noise associated with the use of longer data records.

    Google Scholar 

  50. 50.

    Caron, L.-P. et al. How skilful are the multi-annual forecasts of Atlantic hurricane activity? Bull. Am. Meteorol. Soc. (2017).

    Article  Google Scholar 

  51. 51.

    Suckling, E. B., van Oldenborgh, G. J., Eden, J. M. & Hawkins, E. An empirical model for probabilistic decadal prediction: global attribution and regional hindcasts. Clim. Dynam. 48, 3115–3138 (2017).

    Google Scholar 

  52. 52.

    Robson, J., Sutton, R. & Smith, D. Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys. Res. Lett. 39, L19713 (2012).

    Google Scholar 

  53. 53.

    Hermanson, L. et al. Forecast cooling of the Atlantic subpolar gyre and associated impacts. Geophys. Res. Lett. 41, 5167–5174 (2014).

    Google Scholar 

  54. 54.

    Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    CAS  Google Scholar 

  55. 55.

    Murphy, L. N., Bellomo, K., Cane, M. & Clement, A. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys. Res. Lett. 44, 2472–2480 (2017).

    Google Scholar 

  56. 56.

    Zhang, R. et al. Have aerosols caused the observed Atlantic Multidecadal Variability? J. Atmos. Sci. 70, 1135–1144 (2013).

    Google Scholar 

  57. 57.

    Otterå, O. H., Bentsen, M., Drange, H. & Suo, L. External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci. 3, 688–694 (2010).

    Google Scholar 

  58. 58.

    Ding, H., Greatbatch, R. J., Latif, M., Park, W. & Gerdes, R. Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J. Clim. 26, 7650–7661 (2013).

    Google Scholar 

  59. 59.

    Meehl, G. A., Hu, A. & Teng, H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun. 7, 11718 (2016).

    CAS  Google Scholar 

  60. 60.

    Power, S., Haylock, M., Colman, R. & Wang, X. The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Clim. 19, 4755–4771 (2006).

    Google Scholar 

  61. 61.

    Power, S. & Colman, R. Multi-year predictability in a coupled general circulation model. Clim. Dynam. 26, 247–272 (2006).

    Google Scholar 

  62. 62.

    Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016).

    CAS  Google Scholar 

  63. 63.

    Xie, S. P., Okumura, Y., Miyama, T. & Timmermann, A. Influences of Atlantic climate change on the tropical Pacific via the Central American Isthmus. J. Clim. 21, 3914–3928 (2008).

    Google Scholar 

  64. 64.

    Kucharski, F. et al. Atlantic forcing of Pacific decadal variability. Clim. Dynam. 46, 2337–2351 (2016).

    Google Scholar 

  65. 65.

    Chikamoto, Y., Mochizuki, T., Timmermann, A., Kimoto, M. & Watanabe, M. Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett. 43, 7143–7151 (2016).

    Google Scholar 

  66. 66.

    Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 43, 7143–7151 (2016).

    Google Scholar 

  67. 67.

    Chikamoto, Y. et al. Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun. 6, 6869 (2015).

    CAS  Google Scholar 

  68. 68.

    Tokinaga, H., Xie, S.-P. & Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl Acad. Sci. USA 114, 6227–6232 (2017).

    CAS  Google Scholar 

  69. 69.

    Boer, G. J. et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev. 9, 3751–3777 (2016).This paper describes the upcoming study of decadal prediction under CMIP6. This study will contribute to the issuance of the upcoming Global Annual to Decadal Climate Update by the WCRP GC-NTCP.

    Google Scholar 

  70. 70.

    Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1. 0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).

    Google Scholar 

  71. 71.

    Matthes, K. et al. Solar forcing for CMIP6 (v3. 2). Geosci. Model Dev. 10, 2247–2302 (2017).

    Google Scholar 

  72. 72.

    Collins, M. et al. Challenges and opportunities for improved understanding of regional climate dynamics. Nat. Clim. Change 8, 101–108 (2018).

    Google Scholar 

  73. 73.

    Eade, R. et al. Do seasonal‐to‐decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett. 41, 5620–5628 (2014).

    Google Scholar 

  74. 74.

    Power, S., Delage, F., Wang, G., Smith, I. & Kociuba, G. Apparent limitations in the ability of CMIP5 climate models to simulate recent multi-decadal change in surface temperature: implications for global temperature projections. Clim. Dynam. 49, 53–69 (2017).

    Google Scholar 

  75. 75.

    Cheung, A. H. et al. Comparison of low-frequency internal climate variability in CMIP5 models and observations. J. Clim. 30, 4763–4776 (2017).

    Google Scholar 

  76. 76.

    Wang, C., Zhang, L., Lee, S.-K., Wu, L. & Mechoso, C. R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205 (2014).

    Google Scholar 

  77. 77.

    Pohlmann, H., Kröger, J., Greatbatch, R. J. & Müller, W. A. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific. Clim. Dynam. 49, 2685–2693 (2017).

    Google Scholar 

  78. 78.

    Sanchez-Gomez, E., Cassou, C., Ruprich-Robert, Y., Fernandez, E. & Terray, L. Drift dynamics in a coupled model initialized for decadal forecasts. Clim. Dynam. 46, 1819–1840 (2016).

    Google Scholar 

  79. 79.

    Brune, S., Düsterhus, A., Pohlmann, H., Müller, W. A. & Baehr, J. Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Clim. Dynam. 51, 1947–1970 (2017).

    Google Scholar 

  80. 80.

    Kröger, J., Müller, W. A. & von Storch, J.-S. Impact of different ocean reanalyses on decadal climate prediction. Clim. Dynam. 39, 795–810 (2012).

    Google Scholar 

  81. 81.

    Kröger, J. et al. Full-field initialized decadal predictions with the MPI earth system model: an initial shock in the North Atlantic. Clim. Dynam. 51, 2593–2608 (2017).

    Google Scholar 

  82. 82.

    Kharin, V. V., Boer, G. J., Merryfield, W. J., Scinocca, J. F. & Lee, W. S. Statistical adjustment of decadal predictions in a changing climate. Geophys. Res. Lett. 39, L19705 (2012).

    Google Scholar 

  83. 83.

    Fučkar, N. S., Volpi, D., Guemas, V. & Doblas‐Reyes, F. J. A posteriori adjustment of near‐term climate predictions: accounting for the drift dependence on the initial conditions. Geophys. Res. Lett. 41, 5200–5207 (2014).

    Google Scholar 

  84. 84.

    Smith, D. M., Eade, R. & Pohlmann, H. A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim. Dynam. 41, 3325–3338 (2013).

    Google Scholar 

  85. 85.

    Stammer, D. et al. In OceanObs 09: Sustained Ocean Observations and Information for Society (eds Hall, J. et al.) 979–989 (European Space Agency, 2010).

  86. 86.

    Balmaseda, M. et al. The ocean reanalyses intercomparison project (ORA-IP). J. Oper. Oceanogr. 8, s80–s97 (2015).

    Google Scholar 

  87. 87.

    Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K. & Janssen, P. A coupled data assimilation system for climate reanalysis. Q. J. R. Meteorol. Soc. 142, 65–78 (2016).

    Google Scholar 

  88. 88.

    Penny, S. G. & Hamill, T. M. Coupled data assimilation for integrated earth system analysis and prediction. Bull. Am. Meteorol. Soc. 98, ES169–ES172 (2017).

    Google Scholar 

  89. 89.

    Budescu, D. V., Por, H.-H. & Broomell, S. B. Effective communication of uncertainty in the IPCC reports. Climatic Change 113, 181–200 (2012).

    Google Scholar 

  90. 90.

    Corner, A., Lewandowsky, S., Phillips, M. & Roberts, O. The Uncertainty Handbook (University of Bristol, Bristol, 2015).

  91. 91.

    Spiegelhalter, D. Risk and uncertainty communication. Ann. Rev. Stat. Appl. 4, 31–60 (2017).

    Google Scholar 

  92. 92.

    Buontempo, C. et al. What have we learnt from EUPORIAS climate service prototypes? Clim. Services 9, 21–32 (2018).

    Google Scholar 

  93. 93.

    Marotzke, J. et al. MiKlip: a national research project on decadal climate prediction. Bull. Am. Meteorol. Soc. 97, 2379–2394 (2016).

    Google Scholar 

  94. 94.

    Implementation Plan of the Global Framework for Climate Services (GFCS, 2014).

  95. 95.

    Hansen, J. W. Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agric. Syst. 74, 309–330 (2002).

    Google Scholar 

  96. 96.

    Palin, E. J. et al. Skillful seasonal forecasts of winter disruption to the UK transport system. J. Appl. Meteorol. Climatol. 55, 325–344 (2016).

    Google Scholar 

  97. 97.

    Clark, R. T., Bett, P. E., Thornton, H. E. & Scaife, A. A. Skilful seasonal predictions for the European energy industry. Environ. Res. Lett. 12, ARTN 024002 (2017).

    Google Scholar 

  98. 98.

    Wood, A. W. & Lettenmaier, D. P. A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Am. Meteorol. Soc. 87, 1699–1712 (2006).

    Google Scholar 

  99. 99.

    National Flood Resilience Review (DEFRA, 2016);

  100. 100.

    Thompson, V. et al. High risk of unprecedented UK rainfall in the current climate. Nat. Commun. 8, 107 (2017).

    Google Scholar 

Download references


The authors form the scientific steering group of the WCRP GC-NTCP. The GC-NTCP is one of the international initiatives promoting and advancing science and standards for the coordinated provision of near-term climate predictions at global scale. T.O.K. was supported by the CSIRO Decadal Forecasting Project ( S.P. is supported by the National Environmental Science Program’s Earth Systems and Climate Change Hub. D.M. and W.A.M. were supported by the BMBF projects RACE II (D.M., grant no. FKZ:03F0729D) and MiKlip II (W.A.M., grant no. FKZ: 01LP1519A). The work of K.M. was partly supported by the BMBF within the nationally funded project ROMIC–SOLIC (grant no. 01LG1219) as well as within the frame of the WCRP/SPARC SOLARIS-HEPPA activity. A.A.S. and D.S. were supported by the Joint DECC/Defra Met Office Hadley Centre Climate under grant no. GA01101. E.H. was supported by the UK National Centre for Atmospheric Science and the SMURPHS project (grant no. NE/N006054/1). F.D.R. was supported by the H2020 EUCP (grant no. GA 776613) project.

Author information




Y.K. and A.A.S. wrote the paper with input from all other authors. M.T. provided editing, drafting and factual support.

Corresponding authors

Correspondence to Yochanan Kushnir or Adam A. Scaife.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kushnir, Y., Scaife, A.A., Arritt, R. et al. Towards operational predictions of the near-term climate. Nature Clim Change 9, 94–101 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing