Abstract

The ongoing emission of greenhouse gases (GHGs) is triggering changes in many climate hazards that can impact humanity. We found traceable evidence for 467 pathways by which human health, water, food, economy, infrastructure and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea-level rise and changes in natural land cover and ocean chemistry. By 2100, the world’s population will be exposed concurrently to the equivalent of the largest magnitude in one of these hazards if emmisions are aggressively reduced, or three if they are not, with some tropical coastal areas facing up to six simultaneous hazards. These findings highlight the fact that GHG emissions pose a broad threat to humanity by intensifying multiple hazards to which humanity is vulnerable.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Data on cumulative climate hazards are available in an interactive web app at https://maps.esri.com/MoraLab/CumulativeChange/index.html. Records of impacts and related references are provided at http://impactsofclimatechange.info. All other data and sources used in this study are available within the text.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  2. 2.

    Trenberth, K. E. Framing the way to relate climate extremes to climate change. Climatic Change 115, 283–290 (2012).

  3. 3.

    Piontek, F. et al. Multisectoral climate impact hotspots in a warming world. Proc. Natl Acad. Sci. USA 111, 3233–3238 (2014).

  4. 4.

    Mora, C., Counsell, C. W. W., Bielecki, C. R. & Louis, L. V. Twenty-seven ways a heat wave can kill you: deadly heat in the era of climate change. Circ. Cardiovasc. Qual. Outcomes 10, e004233 (2017).

  5. 5.

    Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

  6. 6.

    Lugeri, N., Kundzewicz, Z. W., Genovese, E., Hochrainer, S. & Radziejewski, M. River flood risk and adaptation in Europe—assessment of the present status. Mitig. Adapt. Strateg. Glob. Change 15, 621–639 (2010).

  7. 7.

    Baro, M. & Deubel, T. F. Persistent hunger: perspectives on vulnerability, famine, and food security in sub-Saharan Africa. Annu. Rev. Anthropol. 35, 521–538 (2006).

  8. 8.

    Brown, O. Migration and Climate Change (International Organization for Migration, 2008).

  9. 9.

    Alston, M. Gender and climate change in Australia. J. Soc. 47, 53–70 (2011).

  10. 10.

    Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106, 7–29 (2011).

  11. 11.

    Day, J. W. et al. Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. Science 315, 1679–1684 (2007).

  12. 12.

    Gronlund, C. J., Zanobetti, A., Schwartz, J. D., Wellenius, G. A. & O’Neill, M. S. Heat, heat waves, and hospital admissions among the elderly in the United States, 1992–2006. Environ. Health Perspect. 122, 1187–1188 (2014).

  13. 13.

    Hurteau, M. D., Westerling, A. L., Wiedinmyer, C. & Bryant, B. P. Projected effects of climate and development on California wildfire emissions through 2100. Environ. Sci. Technol. 48, 2298–2304 (2014).

  14. 14.

    Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003).

  15. 15.

    Solomon, G. M., Hjelmroos-Koski, M., Rotkin-Ellman, M. & Hammond, S. K. Airborne mold and endotoxin concentrations in New Orleans, Louisiana, after flooding, October through November 2005. Environ. Health Perspect. 114, 1381–1386 (2006).

  16. 16.

    Larsen, J. N. et al. Polar regions. Climatic Change 28, 1567–1612 (2014).

  17. 17.

    Frumhoff, P. C., McCarthy, J. J., Melillo, J. M., Moser, S. C. & Wuebbles, D. J. Confronting Climate Change in the US Northeast: A Report of the Northeast Climate Impacts Assessment (Union of Concerned Scientists, 2007).

  18. 18.

    McMichael, T., Montgomery, H. & Costello, A. Health risks, present and future, from global climate change. Br. Med. J. 344, e1359 (2012).

  19. 19.

    Rose, J. B. et al. Climate variability and change in the United States: potential impacts on water-and foodborne diseases caused by microbiologic agents. Environ. Health Perspect. 109, 211–221 (2001).

  20. 20.

    Epstein, P. R. et al. Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull. Am. Meteorol. Soc. 79, 409–417 (1998).

  21. 21.

    Tirado, M., Clarke, R., Jaykus, L., McQuatters-Gollop, A. & Frank, J. Climate change and food safety: a review. Food Res. Int. 43, 1745–1765 (2010).

  22. 22.

    Kendrovski, V. & Gjorgjev, D. in Structure and Function of Food Engineering (ed. Ayman, A.) 151–170 (InTech, Elsevier, Amsterdam, 2012).

  23. 23.

    Comrie, A. Climate change and human health. Geogr. Comp. 1, 325–339 (2007).

  24. 24.

    Epstein, P. R. Climate change and emerging infectious diseases. Microb. Infect. 3, 747–754 (2001).

  25. 25.

    Kovats, R., Campbell-Lendrum, D., McMichel, A., Woodward, A. & Cox, J. S. H. Early effects of climate change: do they include changes in vector-borne disease? Phil. Trans. R. Soc. Lond. B 356, 1057–1068 (2001).

  26. 26.

    Patz, J. A., Olson, S. H., Uejio, C. K. & Gibbs, H. K. Disease emergence from global climate and land use change. Med. Clin. N. Am. 92, 1473–1491 (2008).

  27. 27.

    Gale, P., Drew, T., Phipps, L., David, G. & Wooldridge, M. The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. J. Appl. Microbiol. 106, 1409–1423 (2009).

  28. 28.

    Potera, C. Climate change: challenges of predicting wildfire activity. Environ. Health Perspect. 117, A293 (2009).

  29. 29.

    Butler, C. D. & Harley, D. Primary, secondary and tertiary effects of eco-climatic change: the medical response. Postgrad. Med. J. 86, 230–234 (2010).

  30. 30.

    Faiz, M. & Islam, Q. T. Climate change and health. J. Bangladesh Coll. Phys. Surg. 28, 1–3 (2010).

  31. 31.

    Pradhan, B. K. Key Sector Analysis: Health Adaptation in Nepal (UNDP, 2010); https://go.nature.com/2D5mx9Q

  32. 32.

    Gubler, D. J. et al. Climate variability and change in the United States: potential impacts on vector-and rodent-borne diseases. Environ. Health Perspect. 109, 223–233 (2001).

  33. 33.

    Marques, A., Nunes, M. L., Moore, S. K. & Strom, M. S. Climate change and seafood safety: human health implications. Food Res. Int. 43, 1766–1779 (2010).

  34. 34.

    Miraglia, M. et al. Climate change and food safety: an emerging issue with special focus on Europe. Food Chem. Toxicol. 47, 1009–1021 (2009).

  35. 35.

    IPCC Climate Change 2007: Impacts, Adaptation, and Vulnerability (eds Parry, M. L. et al.) (Cambridge Univ. Press, 2007).

  36. 36.

    Magrin, G. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 581–615 (IPCC, Cambridge Univ. Press, 2007).

  37. 37.

    Gould, E. A. & Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 103, 109–121 (2009).

  38. 38.

    Calow, R. C., MacDonald, A. M., Nicol, A. L. & Robins, N. S. Ground water security and drought in Africa: linking availability, access, and demand. Ground Water 48, 246–256 (2010).

  39. 39.

    Melillo, J. M., Richmond, T. T. & Yohe, G. Climate Change Impacts in the United States: Third National Climate Assessment (US Global Change Research Program, 2014).

  40. 40.

    Fritze, J. G., Blashki, G. A., Burke, S. & Wiseman, J. Hope, despair and transformation: climate change and the promotion of mental health and wellbeing. Int. J. Ment. Health Syst. 2, 13 (2008).

  41. 41.

    Blaikie, P., Cannon, T., Davis, I. & Wisner, B. At Risk: Natural Hazards, People's Vulnerability and Disasters (Routledge, London, 2014).

  42. 42.

    Horton, G., Hanna, L. & Kelly, B. Drought, drying and climate change: emerging health issues for ageing Australians in rural areas. Australas. J. Ageing 29, 2–7 (2010).

  43. 43.

    Rohrbach, L. A., Grana, R., Vernberg, E., Sussman, S. & Sun, P. Impact of Hurricane Rita on adolescent substance use. Psychiatry 72, 222–237 (2009).

  44. 44.

    Willox, A., Harper, S., Ford, J., Edge, V. & Landman, K. Climate change and mental health: an exploratory case study from Rigolet, Nunatsiavut, Canada. Climatic Change 121, 255–270 (2013).

  45. 45.

    Carrington, K., McIntosh, A., Hogg, R. & Scott, J. Safeguarding Rural Australia—Addressing Masculinity and Violence in Rural Settings: Suicide and Other Violent Self-Harm in an Australian Rural Context: Analysis of Secondary Data (Centre for Law and Justice, Queensland Univ. Technology, Brisbane, 2011).

  46. 46.

    Page, L. A., Hajat, S. & Kovats, R. S. Relationship between daily suicide counts and temperature in England and Wales. Br. J. Psychiat. 191, 106–112 (2007).

  47. 47.

    Kunkel, K. E., Pielke, R. A. Jr & Changnon, S. A. Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull. Am. Meteorol. Soc. 80, 1077–1098 (1999).

  48. 48.

    Bosworth, B., Collins, S. & Virmani, A. Sources of Growth in the Indian Economy (National Bureau of Economic Research, Cambridge, 2007).

  49. 49.

    Rosales, M. F. Impact of Early Life Shocks on Human Capital Formation: El Niño Floods in Ecuador (IDB, 2014).

  50. 50.

    Jayachandran, S. Air quality and early-life mortality evidence from Indonesia’s wildfires. J. Hum. Resour. 44, 916–954 (2009).

  51. 51.

    Khan, A. E. et al. Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: a case-control study. PLoS ONE 9, e108715 (2014).

  52. 52.

    Mainville, D. Y. Disasters and development in agricultural input markets: bean seed markets in Honduras after hurricane Mitch. Disasters 27, 154–171 (2003).

  53. 53.

    Nhan, D. K., Trung, N. H. & Sanh, N. V. in Environmental Change and Agricultural Sustainability in the Mekong Delta Vol. 45 (eds Stewart, M. & Coclanis, P.) 437–451 (Springer, Dordrecht, 2011).

  54. 54.

    Chau, V. N., Holland, J., Cassells, S. & Tuohy, M. Using GIS to map impacts upon agriculture from extreme floods in Vietnam. Appl. Geogr. 41, 65–74 (2013).

  55. 55.

    Rossati, A. Global warming and its health impact. Int. J. Occup. Environ. Med. 8, 7–20 (2017).

  56. 56.

    Yu, Q. et al. Proposing an interdisciplinary and cross-scale framework for global change and food security researches. Agric. Ecosyst. Environ. 156, 57–71 (2012).

  57. 57.

    Easterling, W. E. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., et al.) 273–313 (IPCC, Cambridge Univ Press, 2007).

  58. 58.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

  59. 59.

    Ummenhofer, C. C. et al. What causes southeast Australia's worst droughts? Geophys. Res. Lett. 36, L04706 (2009).

  60. 60.

    Bagley, J. E., Desai, A. R., Dirmeyer, P. A. & Foley, J. A. Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets. Environ. Res. Lett. 7, 014009 (2012).

  61. 61.

    Dwivedi, S., Sahrawat, K., Upadhyaya, H. & Ortiz, R. Food, nutrition and agrobiodiversity under global climate change. Adv. Agron. 120, 1–128 (2013).

  62. 62.

    Marvin, H. J. et al. Proactive systems for early warning of potential impacts of natural disasters on food safety: Climate-change-induced extreme events as case in point. Food Control 34, 444–456 (2013).

  63. 63.

    Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

  64. 64.

    Chantarat, S. et al. Insuring Against Drought-Related Livestock Mortality: Piloting Index Based Livestock Insurance in Northern Kenya (Cornell Univ., 2010).

  65. 65.

    Mader, T. L. Animal welfare concerns for cattle exposed to adverse environmental conditions. J. Anim. Sci. 92, 5319–5324 (2014).

  66. 66.

    Eckard, R. Bell, M., Christie, K. & Rawnsley, R. in Living in a Warmer World (ed. Salinger, J.) 144–157 (CSIRO, Auckland, 2013).

  67. 67.

    Sulieman, H. M. & Elagib, N. A. Implications of climate, land-use and land-cover changes for pastoralism in eastern Sudan. J. Arid Environ. 85, 132–141 (2012).

  68. 68.

    St-Pierre, N., Cobanov, B. & Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86, E52–E77 (2003).

  69. 69.

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).

  70. 70.

    Portner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).

  71. 71.

    Jonsson, B. & Jonsson, N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water. J. Fish Biol. 75, 2381–2447 (2009).

  72. 72.

    Wetz, M. S. & Yoskowitz, D. W. An ‘extreme’ future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Mar. Pollut. Bull. 69, 7–18 (2013).

  73. 73.

    Smoyer-Tomic, K. E., Kuhn, R. & Hudson, A. Heat wave hazards: an overview of heat wave impacts in canada. Nat. Hazards 28, 465–486 (2003).

  74. 74.

    Nikolic, N. et al. Bibliometric analysis of diadromous fish research from 1970s to 2010: a case study of seven species. Scientometrics 88, 929–947 (2011).

  75. 75.

    Bladon, K. D., Emelko, M. B., Silins, U. & Stone, M. Wildfire and the future of water supply. Environ. Sci. Technol. 48, 8936–8943 (2014).

  76. 76.

    Anthony, A. et al. Coastal lagoons and climate change: ecological and social ramifications in U.S. Atlantic and Gulf Coast ecosystems. Ecol. Soc. 14, art8 (2009).

  77. 77.

    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).

  78. 78.

    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).

  79. 79.

    Chateau-Degat, M., Chinain, M., Cerf, N. & Gingras, S. Seawater temperature, Gambierdiscus spp. variability and incidence of ciguatera poisoning in French Polynesia. Harmful Algae 4, 1053–1062 (2005).

  80. 80.

    Shen, C., Wang, W.-C., Hao, Z. & Gong, W. Exceptional drought events over eastern China during the last five centuries. Climatic Change 85, 453–471 (2007).

  81. 81.

    Chapin, F. S. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

  82. 82.

    Sahagian, D., Vorosmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. BioScience 50, 753–765 (2000).

  83. 83.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2012).

  84. 84.

    Morton, K. Climate change and security at the third pole. Survival 53, 121–132 (2011).

  85. 85.

    Smith, P. J. Climate change, mass migration and the military response. Orbis 51, 617–633 (2007).

  86. 86.

    Benotti, M. J., Stanford, B. D. & Snyder, S. A. Impact of drought on wastewater contaminants in an urban water supply. J. Environ. Qual. 39, 1196–2000 (2010).

  87. 87.

    van Vliet, M. T. H. & Zwolsman, J. J. G. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 353, 1–17 (2008).

  88. 88.

    Mansilha, C., Carvalho, A., Guimarães, P. & Espinha Marques, J. Water quality concerns due to forest fires: polycyclic aromatic hydrocarbons (pah) contamination of groundwater from mountain areas. J. Tox. Environ. Health 77, 806–815 (2014).

  89. 89.

    Sprague, L. A. Drought effects on water quality in the South Platte river basin, Colorado. J. Am. Water. Resour. Assoc. 41, 11–24 (2005).

  90. 90.

    Kovats, R. S. et al. Climate change and human health in Europe. Br. Med. J. 318, 1682–1685 (1999).

  91. 91.

    Embrey, S., Remais, J. V. & Hess, J. Climate change and ecosystem disruption: the health impacts of the North American rocky mountain pine beetle infestation. Am. J. Public Health 102, 818–827 (2012).

  92. 92.

    Chanda Shimi, A., Ara Parvin, G., Biswas, C. & Shaw, R. Impact and adaptation to flood. Disaster Prev. Manag. 19, 298–313 (2010).

  93. 93.

    Mustafa, D. & Wrathall, D. Basin floods of 2010: souring of a faustian bargain? Water Altern. 4, 72–85 (2011).

  94. 94.

    Shahid, S. Vulnerability of the power sector of Bangladesh to climate change and extreme weather events. Reg. Environ. Change 12, 595–606 (2012).

  95. 95.

    Ibàñez, C., Canicio, A., Day, J. W. & Curcó, A. Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain. J. Coast. Conserv. 3, 191–202 (1997).

  96. 96.

    Nunn, P. D. The end of the Pacific? Effects of sea level rise on Pacific Island livelihoods. Singap. J. Trop. Geogr. 34, 143–171 (2013).

  97. 97.

    Bollinger, L. A. & Dijkema, G. P. J. Evaluating infrastructure resilience to extreme weather — the case of the Dutch electricity transmission network. Eur. J. Transp. Infrastruct. Res. 16, 214–239 (2016).

  98. 98.

    Sabbag, L. Temperature Impacts on Health, Productivity, and Infrastructure in the Urban Setting, and Options for Adaptation (Institute for Social and Environmental Transition-International, Boulder, 2013).

  99. 99.

    Lyster, R. & Byrne, R. Climate Change Adaptation and Electricity Infrastructure (Sydney Law School, Sydney, 2013).

  100. 100.

    Oliver, E., Martin, D., Krause, O., Bartlett, S. & Froome, C. How is climate change likely to affect Queensland electricity infrastructure into the future? In 2015 IEEE/PES Asia-Pacific Power and Energy Engineering Conference https://doi.org/10.1109/APPEEC.2015.7380972 (IEEE/PES, 2016).

  101. 101.

    Zampieri, M. et al. Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Sci. Total Environ. 571, 1330–1339 (2016).

  102. 102.

    Reeves, J. et al. Impacts and Adaptation Response of Infrastructure and Communities to Heatwaves: The Southern Australian Experience of 2009 Report No. 192160915X (Queensland Univ. of Technology, Univ. Southern Queensland and Monash Univ., 2010).

  103. 103.

    Procupez, V. The perfect storm: heat waves and power outages in Buenos Aires. Publ. Cult. 28, 351–357 (2016).

  104. 104.

    Klinger, C., Landeg, O. & Murray, V. Power outages, extreme events and health: a systematic review of the literature from 2011–2012. PLoS Curr. Disasters 6, https://go.nature.com/2ORjVn5 (2014).

  105. 105.

    Schaeffer, R., Szklo, A., Lucena, Ad & Borba, B. Energy sector vulnerability to climate change: a review. Energy 38, 1–12 (2012).

  106. 106.

    Mcguirk, M., Shuford, S., Peterson, T. C. & Pisano, P. Weather and climate change implications for surface transportation in the USA. WMO Bull. 58, 84–93 (2009).

  107. 107.

    Hunt, A. & Watkiss, P. Climate change impacts and adaptation in cities: a review of the literature. Climatic Change 104, 13–49 (2011).

  108. 108.

    Llasat, M. C. et al. High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv. Geosci. 23, 47–55 (2010).

  109. 109.

    Wardhana, K. & Hadipriono, F. C. Analysis of recent bridge failures in the United States. J. Perform. Constr. Fac. 17, 144–150 (2003).

  110. 110.

    Revi, A. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 535–612 (IPCC, Cambridge Univ. Press, 2014).

  111. 111.

    Climate Change Impacts and Adaptation for International Transport Networks (UN Economic Commission for Europe, 2013); http://www.unece.org/fileadmin/DAM/trans/main/wp5/publications/climate_change_2014.pdf

  112. 112.

    Karl, T. R., Melilo, J. M. & Peterson, T. C. (eds) Global Climate Change Impacts in the United States (Cambridge Univ. Press, New York, 2009).

  113. 113.

    Nolte, R., Kamburow, C. & Rupp, J. Adaptation of Railway Infrastructure to Climate Change (International Union of Railways, 2011).

  114. 114.

    MacArthur, J. et al. Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska Report No. OTREC-RR-12-01 (Transportation Research and Education Center, 2012).

  115. 115.

    Peterson, T. C., McGuirk, M., Houston, T. G., Horvitz, A. H. & Wehner, M. F. Climate Variability and Change with Implications for Transportation (Transportation Research Board, 2008).

  116. 116.

    Dobney, K., Baker, C. J., Chapman, L. & Quinn, A. D. The future cost to the United Kingdom's railway network of heat-related delays and buckles caused by the predicted increase in high summer temperatures owing to climate change. Proc. Inst. Mech. Eng. 224, 25–34 (2010).

  117. 117.

    Moorty, S. & Roeder, C. Temperature-dependent bridge movements. J. Struct. Eng. 118, 1090–1105 (1992).

  118. 118.

    Davies, A. Why planes can't fly in extreme heat. Business Insider (1 July 2013); http://www.businessinsider.com/why-planes-cant-fly-in-extreme-heat-2013-7

  119. 119.

    Quah, E. & Varkkey, H. M. in The Asian Community—Its Concepts and Prospects (ed. Sei, H. H.) 323–358 (Soso Sha, Tokyo, 2013).

  120. 120.

    Parry, M. L. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 843–868 (IPCC, Cambridge Univ. Press, 2007).

  121. 121.

    Bhandari, G. & Gurung, G. B. Integrated approach to climate change adaptation. J. For. Livelihood 8, 91–99 (2009).

  122. 122.

    Webb, R. H. et al. Debris Flows and Floods in Southeastern Arizona from Extreme Precipitation in July 2006—Magnitude, Frequency, and Sediment Delivery Report No. 2008-1274 (USGS, 2008).

  123. 123.

    Tsai, H.-T., Tseng, C.-J., Tzeng, S.-Y., Wu, T.-J. & Day, J.-d The impacts of natural hazards on Taiwan’s tourism industry. Nat. Hazards 62, 83–91 (2011).

  124. 124.

    Bigger, J. E., Willingham, M. G., Krimgold, F. & Mili, L. Consequences of critical infrastructure interdependencies: lessons from the 2004 hurricane season in Florida. Int. J. Crit. Infrastruct. 5, 199 (2009).

  125. 125.

    Tierney, K. J. & Nigg, J. M. Business Vulnerability to Disaster-Related Lifeline Disruption (Univ. Delaware, Disaster Research Center, Newark, 1995).

  126. 126.

    Rehman, J. Heat not Wet: Climate Change Effects on Human Migration in Rural Pakistan (College of Medicine, Univ. Illinois at Chicago, 2015).

  127. 127.

    Scott, D., Simpson, M. C. & Sim, R. The vulnerability of Caribbean coastal tourism to scenarios of climate change related sea level rise. J. Sustain. Tour. 20, 883–898 (2012).

  128. 128.

    Banerjee, O., Bark, R., Connor, J. & Crossman, N. N. D. An ecosystem services approach to estimating economic losses associated with drought. Ecol. Econ. 91, 19–27 (2013).

  129. 129.

    Wang, X., Stewart, M. G. & Nguyen, M. Impact of climate change on corrosion and damage to concrete infrastructure in Australia. Climatic Change 110, 941–957 (2017).

  130. 130.

    Albert, S. et al. Interactions between sea-level rise and wave exposure on reef island dynamics in the Solomon Islands. Environ. Res. Lett. 11, 054011 (2016).

  131. 131.

    Mooney, H. et al. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 1, 46–54 (2009).

  132. 132.

    Howitt, R., Medellín-Azuara, J., MacEwan, D., Lund, J. & Sumner, D. Economic Analysis of the 2014 Drought for California Agriculture (Center for Watershed Sciences, University of California–Davis, 2015).

  133. 133.

    Mechler, R. & Weichselgartner, J. Disaster Loss Financing in Germany—The Case of the Elbe River Floods 2002 Interim Report No. IR-03-021 (IIASA, 2003).

  134. 134.

    Costanza, R. et al. The value of coastal wetlands for hurricane protection. AMBIO 37, 241–248 (2008).

  135. 135.

    Coffman, M. & Noy, I. Hurricane Iniki: measuring the long-term economic impact of a natural disaster using synthetic control. Environ. Dev. Econ. 17, 187–205 (2012).

  136. 136.

    Wilbanks, T. J. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 357–390 (IPCC, Cambridge Univ. Press, 2007).

  137. 137.

    Pechan, A. & Eisenack, K. The impact of heat waves on electricity spot markets. Energ. Econ. 43, 63–71 (2014).

  138. 138.

    Urbanchuk, J. Contribution of Biofuels to the Global Economy (Global Renewable Fuels Association, 2012).

  139. 139.

    Zander, K. K., Botzen, W. J. W., Oppermann, E., Kjellstrom, T. & Garnett, S. T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Change 5, 1–6 (2015).

  140. 140.

    Berry, H. L., Bowen, K. & Kjellstrom, T. Climate change and mental health: a causal pathways framework. Int. J. Public Health 55, 123–132 (2010).

  141. 141.

    Dewan, T. H. Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather Clim. Extremes 7, 36–42 (2015).

  142. 142.

    Caldwell, J. C., Reddy, P. H. & Caldwell, P. Periodic high risk as a cause of fertility decline in a changing rural environment: Survival strategies in the 1980–1983 south Indian drought. Econ. Dev. Cult. Change 34, 677–701 (1986).

  143. 143.

    Roessig, J. M., Woodley, C. M., Cech, J. J. & Hansen, L. J. Effects of global climate change on marine and estuarine fishes and fisheries. Rev. Fish Biol. Fish. 14, 251–275 (2004).

  144. 144.

    Buckley, L. B. & Foushee, M. S. Footprints of climate change in US national park visitation. Int. J. Biometeorol. 56, 1173–1177 (2012).

  145. 145.

    Liu, T.-M. Analysis of the economic impact of meteorological disasters on tourism: the case of typhoon Morakot's impact on the Maolin National Scenic Area in Taiwan. Tour. Econ. 20, 143–156 (2014).

  146. 146.

    Scott, D. & Lemieux, C. Weather and climate information for tourism. Proced. Environ. Sci. 1, 146–183 (2010).

  147. 147.

    Liverman, D. M. Vulnerability and adaptation to drought in Mexico. Nat. Resour. J. 39, 99–115 (1999).

  148. 148.

    Scott, D., Mcboyle, A. G., Ae, D. S. & Mcboyle, G. Climate change adaptation in the ski industry. Mitig. Adapt. Strateg. Glob. Change 12, 1411–1431 (2007).

  149. 149.

    Pickering, C. M., Castley, J. G. & Burtt, M. Skiing less often in a warmer world: attitudes of tourists to climate change in an Australian ski resort. Geogr. Res. 48, 137–147 (2009).

  150. 150.

    Wilkinson, C. R. Global change and coral reefs: impacts on reefs, economies and human cultures. Glob. Change Biol. 2, 547–558 (1996).

  151. 151.

    Meynecke, J. O., Richards, R. & Sahin, O. Whale watch or no watch: the Australian whale watching tourism industry and climate change. Reg. Environ. Change 17, 1–12 (2016).

  152. 152.

    Black, R., Arnell, N. W., Adger, W. N., Thomas, D. & Geddes, A. Migration, immobility and displacement outcomes following extreme events. Environ. Sci. Pol. 27, S32–S43 (2012).

  153. 153.

    Campbell, B. K. M. et al. The Age of Consequences: The Foreign Policy and National Security Implications of Global Climate Change (Center for Strategic and International Studies and Center for a New American Security, 2007).

  154. 154.

    Christoplos, I. et al. Learning from recovery after Hurricane Mitch. Disasters 34, 202–219 (2010).

  155. 155.

    Brennan, T. The Impact of Increasing Severe Weather Events on Shelter (US Environmental Protection Agency, 2010).

  156. 156.

    Raleigh, C., Jordan, L. & Salehyan, I. Assessing the impact of climate change on migration and conflict. World 24, 1–57 (2008).

  157. 157.

    Hazra, S., Ghosh, T., Dasgupta, R. & Sen, G. Sea level and associated changes in the Sundarbans. Sci. Cult. 68, 309–321 (2002).

  158. 158.

    McLeman, R. & Smit, B. Migration as an adaptation to climate change. Climatic Change 76, 31–53 (2006).

  159. 159.

    AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T. & Lund, J. Recognize anthropogenic drought. Nature 524, 409–411 (2015).

  160. 160.

    Gupta, A. Geopolitical implications of Arctic meltdown. Strateg. Anal. 33, 174–177 (2009).

  161. 161.

    Johnson, L. The fearful symmetry of Arctic climate change: accumulation by degradation. Environ. Plann. D 28, 828–847 (2010).

  162. 162.

    Hsiang, S. M. & Burke, M. Climate, conflict, and social stability: what does the evidence say? Climatic Change 123, 39–55 (2014).

  163. 163.

    Ide, T. & Scheffran, J. On climate, conflict and cumulation: suggestions for integrative cumulation of knowledge in the research on climate change and violent conflict. Glob. Change Peace Secur. 26, 263–279 (2014).

  164. 164.

    Raleigh, C., Choi, H. J. & Kniveton, D. The devil is in the details: an investigation of the relationships between conflict, food price and climate across Africa. Glob. Environ. Change 32, 187–199 (2015).

  165. 165.

    Von Uexkull, N. Sustained drought, vulnerability and civil conflict in Sub-Saharan Africa. Polit. Geogr. 43, 16–26 (2014).

  166. 166.

    Gleick, P. H. Water, drought, climate change, and conflict in Syria. Weather Clim. Soc. 6, 331–340 (2014).

  167. 167.

    Maystadt, J., Ecker, O. & Mabiso, A. Extreme Weather and Civil War in Somalia: Does Drought Fuel Conflict Through Livestock Price Shocks? (International Food Policy Research Institute, 2013).

  168. 168.

    Hendrix, C. S. & Salehyan, I. Climate change, rainfall, and social conflict in Africa. J. Peace Res. 49, 35–50 (2012).

  169. 169.

    Hsiang, S. M., Meng, K. C. & Cane, M. A. Civil conflicts are associated with the global climate. Nature 476, 438–441 (2011).

  170. 170.

    Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on human conflict. Science 341, 1235367 (2013).

  171. 171.

    Larrick, R. P., Timmerman, T. A., Carton, A. M. & Abrevaya, J. Temper, temperature, and temptation: heat-related retaliation in baseball. Psychol Sci. 22, 423–428 (2011).

  172. 172.

    Anderson, C. A. & Delisi, M. in The Psychology of Social Conflict and Aggression (eds Forgas, J. et al.) 249–265 (Psychology, New York, 2011).

  173. 173.

    Rotton, J. & Cohn, E. G. Global warming and U. S. crime rates: an application of routine activity theory. Environ. Behav. 35, 802–825 (2003).

  174. 174.

    Sims, B. 'The day after the hurricane': infrastructure, order, and the New Orleans police department's response to hurricane Katrina. Soc. Stud. Sci. 37, 111–118 (2007).

  175. 175.

    Jenkins, P. & Phillips, B. Battered women, catastrophe, and the context of safety after Hurricane Katrina. NWSA J. 20, 49–68 (2008).

  176. 176.

    Thornton, W. E. & Voigt, L. Disaster rape: vulnerability of women to sexual assaults during Hurricane Katrina. J. Public Manage. Soc. Policy 13, 23–49 (2007).

  177. 177.

    Verwimp, P. Food Security, Violent Conflict and Human Development: Causes and Consequences (United Nations Development Program, 2012).

  178. 178.

    Lane, K. et al. Health effects of coastal storms and flooding in urban areas: a review and vulnerability assessment. J. Environ. Public Health 2013, 913064 (2013).

  179. 179.

    Enarson, E. Violence against women in disasters: a study of domestic violence programs in the United States and Canada. Violence Against Wom. 5, 742–768 (1999).

  180. 180.

    Don’t jump to conclusions about climate change and civil conflict. Nature 554, 275–276 (2018).

  181. 181.

    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

  182. 182.

    Mora, C. et al. Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PLoS Biol. 13, e1002167 (2015).

  183. 183.

    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).

  184. 184.

    Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2014).

  185. 185.

    Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).

  186. 186.

    Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 6, 781–785 (2016).

  187. 187.

    Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. Earth Future 2, 383–406 (2014).

  188. 188.

    Emanuel, K. A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl Acad. Sci. USA 110, 12219–12224 (2013).

  189. 189.

    Hanasaki, N. et al. A global water scarcity assessment under Shared Socio-economic Pathways. Hydrol. Earth Syst. Sci. 17, 2393 (2013).

  190. 190.

    Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dynam. 31, 79–105 (2008).

  191. 191.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500-2100, 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109, 117–161 (2011).

  192. 192.

    Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

  193. 193.

    Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).

  194. 194.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

  195. 195.

    Jones, B. & O’Neill, B. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).

  196. 196.

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

  197. 197.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

  198. 198.

    Haddaway, N. R., Collins, A. M., Coughlin, D. & Kirk, S. The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE 10, e0138237 (2015).

  199. 199.

    Gehanno, J. F., Rollin, L. & Darmoni, S. Is the coverage of Google Scholar enough to be used alone for systematic reviews? BMC Med. Inform. Decis. Mak. 13, 7 (2013).

  200. 200.

    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

  201. 201.

    Stott, P. A. et al. Attribution of extreme weather and climate-related events. WIREs Clim. Change 7, 23–41 (2016).

  202. 202.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  203. 203.

    Huber, M. & Knutti, R. Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nat. Geosci. 5, 31–36 (2012).

  204. 204.

    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353 (2008).

  205. 205.

    Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).

  206. 206.

    Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

  207. 207.

    Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011).

  208. 208.

    Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

  209. 209.

    Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate change. Eos 87, 233–241 (2006).

  210. 210.

    Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R. & Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl Acad. Sci. USA 112, 3241–3246 (2015).

  211. 211.

    Marcos, M. & Amores, A. Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Geophys. Res. Lett. 41, 2502–2507 (2014).

  212. 212.

    Gillett, N., Weaver, A., Zwiers, F. & Flannigan, M. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31, L18211 (2004).

  213. 213.

    Gleckler, P. J. et al. Human-induced global ocean warming on multidecadal timescales. Nat. Clim. Change 2, 524–529 (2012).

  214. 214.

    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

Download references

Acknowledgements

This study was made possible by a grant/cooperative agreement from the National Oceanic and Atmospheric Administration, Project R/IR-31, R/IR-25PD, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional grant nos NA14OAR4170071 and NA09OAR4170060 from NOAA Office of Sea Grant, Department of Commerce. D.S. was supported by the University of Hawaii Sea Grant College Program under UNIHI-SEAGRANT-JC-13-37. E.C.F. was supported by NOAA Fisheries award no. NA15NMF4520361. L.V.L. was supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1650441. A.G.F. was supported by the National Bioclimatology and Climate Change Program, USDA Forest Service, and the Department of Interior Pacific Islands Climate Adaptation Science Center award no. G16PG00037. E.H. was supported by the National Centre for Atmospheric Science and by the NERC REAL project (grant no. NE/N018591/1). Y.H. and N.H. were supported by ERTDF S-14, ERCA, Japan. W.K. was supported by BECC. C.M.L. acknowledges support from NASA award no. NNH16CT01C. We thank the ESRI’s Applications Prototype Lab for their help with creating the online mapping application. This paper was developed as part of the graduate course on Methods for Large-Scale Analyses in the Department of Geography and Environment at the University of Hawai’i at Mānoa.

Author information

Affiliations

  1. Department of Geography and Environment, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • Camilo Mora
    •  & Erik C. Franklin
  2. Department of Urban and Regional Planning, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • Daniele Spirandelli
  3. Sea Grant College, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • Daniele Spirandelli
  4. Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI, USA

    • Erik C. Franklin
    • , Kelle Freel
    •  & Evan W. Barba
  5. Department of Economics, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • John Lynham
  6. University of Hawai‘i Economic Research Organization, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • John Lynham
  7. Department of Tropical Plant and Soil Science, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • Michael B. Kantar
  8. Pacific Islands Climate Change Cooperative, Honolulu, HI, USA

    • Wendy Miles
  9. Center for Conservation Research and Training, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • Wendy Miles
  10. Department of Natural Resources and Environmental Management, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • Charlotte Z. Smith
  11. Department of Biology, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • Jade Moy
    •  & Cynthia L. Hunter
  12. Department of Natural Resources, Cornell University, Ithaca, NY, USA

    • Leo V. Louis
  13. East-West Center, Honolulu, HI, USA

    • Keith Bettinger
    •  & Abby G. Frazier
  14. Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, HI, USA

    • Abby G. Frazier
  15. School of Architecture, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • John F. Colburn IX
  16. Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan

    • Naota Hanasaki
  17. National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, UK

    • Ed Hawkins
  18. Department of Civil Engineering, Shibaura Institute of Technology, Tokyo, Japan

    • Yukiko Hirabayashi
  19. Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

    • Wolfgang Knorr
  20. Oceanography Department, Atmospheric and Environmental Research, Inc., Lexington, MA, USA

    • Christopher M. Little
  21. Lorenz Center, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Kerry Emanuel
  22. School of Geography and Environmental Science, University of Southampton, Southampton, UK

    • Justin Sheffield
  23. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA

    • Justin Sheffield
  24. Global Health Institute, University of Wisconsin, Madison, WI, USA

    • Jonathan A. Patz

Authors

  1. Search for Camilo Mora in:

  2. Search for Daniele Spirandelli in:

  3. Search for Erik C. Franklin in:

  4. Search for John Lynham in:

  5. Search for Michael B. Kantar in:

  6. Search for Wendy Miles in:

  7. Search for Charlotte Z. Smith in:

  8. Search for Kelle Freel in:

  9. Search for Jade Moy in:

  10. Search for Leo V. Louis in:

  11. Search for Evan W. Barba in:

  12. Search for Keith Bettinger in:

  13. Search for Abby G. Frazier in:

  14. Search for John F. Colburn IX in:

  15. Search for Naota Hanasaki in:

  16. Search for Ed Hawkins in:

  17. Search for Yukiko Hirabayashi in:

  18. Search for Wolfgang Knorr in:

  19. Search for Christopher M. Little in:

  20. Search for Kerry Emanuel in:

  21. Search for Justin Sheffield in:

  22. Search for Jonathan A. Patz in:

  23. Search for Cynthia L. Hunter in:

Contributions

C.M., D.S., E.C.F., J.L., M.B.K., W.M., C.Z.S., K.F., J.M., L.V.L., E.W.B., K.B., A.G.F., J.F.C, J.A.P. and C.L.H. collected data on observed impacts. C.M., N.H., E.H., Y.H., W.K., C.M.L., K.E. and J.S. provided projections of climate hazards. C.M. conducted the analysis of the cumulative impacts. All authors contributed to the writing and revision of the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Camilo Mora.

Supplementary information

  1. Supplementary Information

    Supplementary Note 1 - 2, Supplementary References, Supplementary Figure 1 -4, Supplementary Table 1

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0315-6