Review Article | Published:

The Greenland and Antarctic ice sheets under 1.5 °C global warming


Even if anthropogenic warming were constrained to less than 2 °C above pre-industrial, the Greenland and Antarctic ice sheets will continue to lose mass this century, with rates similar to those observed over the past decade. However, nonlinear responses cannot be excluded, which may lead to larger rates of mass loss. Furthermore, large uncertainties in future projections still remain, pertaining to knowledge gaps in atmospheric (Greenland) and oceanic (Antarctica) forcing. On millennial timescales, both ice sheets have tipping points at or slightly above the 1.5–2.0 °C threshold; for Greenland, this may lead to irreversible mass loss due to the surface mass balance–elevation feedback, whereas for Antarctica, this could result in a collapse of major drainage basins due to ice-shelf weakening.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Data from CESM-CAM5 is available at:

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866–872 (2014).

  2. 2.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

  3. 3.

    Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

  4. 4.

    Hanna, E., Mernild, S. H., Cappelen, J. & Steffen, K. Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ. Res. Lett. 7, 045404 (2012).

  5. 5.

    Hanna, E. et al. Ice-sheet mass balance and climate change. Nature 498, 51–59 (2013).

  6. 6.

    Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018). A systematic, detailed and insightful review of Greenland Ice Sheet (and other land ice) mass balance changes between 1992 and 2016 that provides a very useful post-AR5 synthesis.

  7. 7.

    Wilton, D. et al. High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data. J. Glaciol. 63, 176–193 (2016).

  8. 8.

    Fettweis, X. et al. Brief communication: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere 7, 241–248 (2013).

  9. 9.

    Hall, R., Erdélyi, R., Hanna, E., Jones, J. M. & Scaife, A. A. Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol. 35, 1697–1720 (2015).

  10. 10.

    Lim, Y.-K. et al. Atmospheric summer teleconnections and Greenland ice sheet surface mass variations: insights from MERRA-2. Environ. Res. Lett. 11, 024002 (2016).

  11. 11.

    Hanna, E., Cropper, T. E., Hall, R. J. & Cappelen, J. Greenland blocking index 1851–2015: a regional climate change signal. Int. J. Climatol. 36, 4847–4861 (2016).

  12. 12.

    Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).

  13. 13.

    Hofer, S., Tedstone, A. J., Fettweis, X. & Bamber, J. L. Decreasing cloud cover drives the recent mass loss on the Greenland ice sheet. Sci. Adv. 3, e1700584 (2017). This study highlights the importance of cloud cover changes on surface energy and mass balance in Greenland.

  14. 14.

    Van den Broeke, M. et al. Greenland ice sheet surface mass loss: recent developments in observation and modeling. Curr. Clim. Change Rep. 3, 345–356 (2017). A state-of-the-science critical review of outstanding research questions in GrIS surface mass balance work.

  15. 15.

    Van Tricht, K. et al. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 7, 10266 (2016).

  16. 16.

    Edwards, T. L. et al. Effect of uncertainty in surface mass balance-elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. Cryosphere 8, 195–208 (2014).

  17. 17.

    Vizcaino, M. et al. Coupled simulations of Greenland ice sheet and climate change up to A.D. 2300. Geophys. Res. Lett. 42, 3927–3935 (2015).

  18. 18.

    Goelzer, H., Robinson, A., Seroussi, H. & van de Wal, R. Recent progress in Greenland ice sheet modelling. Curr. Clim. Change Rep. 3, 291–302 (2017).

  19. 19.

    Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).

  20. 20.

    Bigg, G. R. et al. A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. R. Soc. A 470, 20130662 (2014).

  21. 21.

    Holland, D. M., Thomas, R., deYoung, B., Ribergaard, M. & Lyberth, B. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659–664 (2008).

  22. 22.

    Khan, S. A. et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Clim. Change 4, 292–299 (2014).

  23. 23.

    Nick, F. M. et al. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497, 235–238 (2013).

  24. 24.

    Zwally, H. J. et al. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222 (2002).

  25. 25.

    Sundal, A. et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469, 521–524 (2011).

  26. 26.

    Shannon, S. R. et al. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proc. Natl Acad. Sci. USA 110, 14156–14161 (2013).

  27. 27.

    Fürst, J. J., Goelzer, H. & Huybrechts, P. Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere 9, 1039–1062 (2015). Authoritative study on GrIS future change and resulting SLR to 2300, indicating that volume loss is mainly caused by increased surface melting and that the largest modelled uncertainties relate to surface mass balance and the underpinning climate projections rather than ice-sheet dynamics.

  28. 28.

    Goelzer, H. et al. Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol. 59, 733–749 (2013).

  29. 29.

    Nowicki, S. et al. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. J. Geophys. Res. Earth Surf. 118, 1025–1044 (2013).

  30. 30.

    Morlighem, M. et al. Modeling of Store Gletscher’s calving dynamics, West Greenland, in response to ocean thermal forcing. Geophys. Res. Lett. 43, 2659–2666 (2016).

  31. 31.

    Aschwanden, A., Fahnestock, M. A. & Truffer, M. Complex Greenland outlet glacier flow captured. Nat. Commun. 7, 10524 (2016).

  32. 32.

    Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H. & Larour, E. Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci. 7, 418–422 (2014).

  33. 33.

    Benn, D. I., Warren, C. R. & Mottram, R. H. Calving processes and the dynamics of calving glaciers. Earth Sci. Rev. 82, 143–179 (2007).

  34. 34.

    Bondzio, J. H. et al. The mechanisms behind Jakobshavn Isbrae’s acceleration and mass loss: a 3-D thermomechanical model study. Geophys. Res. Lett. 44, 6252–6260 (2017).

  35. 35.

    Robinson, A. & Goelzer, H. The importance of insolation changes for paleo ice sheet modeling. Cryosphere 8, 1419–1428 (2014).

  36. 36.

    Tedesco, M. et al. The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100). Cryosphere 10, 477–496 (2016). An excellent and detailed review highlighting the importance of albedo changes in Greenland.

  37. 37.

    Tedstone, A. J. et al. Dark ice dynamics of the south-west Greenland ice sheet. Cryosphere 11, 2491–2506 (2017).

  38. 38.

    Ryan, J. C. et al. Dark zone of the Greenland ice sheet controlled by distributed biologically-active impurities. Nat. Commun. 9, 1065 (2018).

  39. 39.

    Ridley, J., Gregory, J. M., Huybrechts, P. & Lowe, J. Thresholds for irreversible decline of the Greenland ice sheet. Clim. Dynam. 35, 1065–1073 (2010).

  40. 40.

    Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2, 429–432 (2012).

  41. 41.

    Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).

  42. 42.

    Shepherd, A. et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018). Most recent and up-to-date mass balance estimate of the AIS, showing significant increased contributions from the ice sheet to SLR over the past decade.

  43. 43.

    Smith, A. M., Bentley, C. R., Bingham, R. G. & Jordan, T. A. Rapid subglacial erosion beneath Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 39, L12501 (2012).

  44. 44.

    Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L. & van den Broeke, M. R. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Clim. Dynam. 47, 1367–1381 (2016).

  45. 45.

    Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 13, 1491–1513 (2017).

  46. 46.

    Palerme, C. et al. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim. Dynam. 48, 225–239 (2017).

  47. 47.

    Kuipers Munneke, P., Picard, G., Van Den Broeke, M. R., Lenaerts, J. T. M. & Van Meijgaard, E. Insignificant change in Antarctic snowmelt volume since 1979. Geophys. Res. Lett. 39, L01501 (2012).

  48. 48.

    Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

  49. 49.

    Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352 (2017).

  50. 50.

    Bell, R. E. et al. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 544, 344–348 (2017).

  51. 51.

    Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).

  52. 52.

    Borstad, C. et al. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophys. Res. Lett. 43, 2027–2035 (2016).

  53. 53.

    Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).

  54. 54.

    Munneke, P. K., Ligtenberg, S. R. M., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

  55. 55.

    Banwell, A. F., MacAyeal, D. R. & Sergienko, O. V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 40, 5872–5876 (2013).

  56. 56.

    Massom, R. A. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558, 383–389 (2018).

  57. 57.

    Abram, N. J. et al. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat. Geosci. 6, 404–411 (2013).

  58. 58.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016). High-end projections of the AIS contribution to SLR based on ice-shelf hydrofracturing and subsequent ice cliff collapse.

  59. 59.

    Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4, 519–523 (2011).

  60. 60.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

  61. 61.

    Greenbaum, J. S. et al. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 8, 294–298 (2015).

  62. 62.

    Wouters, B. et al. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348, 899–903 (2015).

  63. 63.

    Paolo, F. S. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci. 11, 121–126 (2018).

  64. 64.

    Little, C. M. & Urban, N. M. CMIP5 temperature biases and 21st century warming around the Antarctic coast. Ann. Glaciol. 57, 69–78 (2016).

  65. 65.

    Asay-Davis, X. S., Jourdain, N. C. & Nakayama, Y. Developments in simulating and parameterizing interactions between the Southern Ocean and the Antarctic Ice Sheet. Curr. Clim. Change Rep. 3, 316–329 (2017).

  66. 66.

    Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).

  67. 67.

    Kusahara, K. & Hasumi, H. Pathways of basal meltwater from Antarctic ice shelves: a model study. J. Geophys. Res. Oceans 119, 5690–5704 (2014).

  68. 68.

    Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

  69. 69.

    Timmermann, R. & Hellmer, H. H. Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dynam. 63, 1011–1026 (2013).

  70. 70.

    Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).

  71. 71.

    Pattyn, F. et al. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. Cryosphere 6, 573–588 (2012).

  72. 72.

    Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

  73. 73.

    Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

  74. 74.

    Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

  75. 75.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

  76. 76.

    Nias, I. J., Cornford, S. L. & Payne, A. J. Contrasting the modelled sensitivity of the Amundsen Sea embayment ice streams. J. Glaciol. 62, 552–562 (2016).

  77. 77.

    Seroussi, H. et al. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys. Res. Lett. 44, 6191–6199 (2017).

  78. 78.

    Bassis, J. N. & Walker, C. C. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. A 468, 913–931 (2012).

  79. 79.

    Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

  80. 80.

    Cornford, S. L. et al. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. Cryosphere 9, 1579–1600 (2015).

  81. 81.

    Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015). Long-term (multimillennial) projections of the AIS and potential tipping points.

  82. 82.

    Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3459–3464 (2016).

  83. 83.

    Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).

  84. 84.

    Mengel, M. et al. Future sea level rise constrained by observations and long-term commitment. Proc. Natl Acad. Sci. USA 113, 2597–2602 (2016).

  85. 85.

    Arthern, R. J. & Williams, C. R. The sensitivity of West Antarctica to the submarine melting feedback. Geophys. Res. Lett. 44, 2352–2359 (2017).

  86. 86.

    Waibel, M. S., Hulbe, C. L., Jackson, C. S. & Martin, D. F. Rate of mass loss across the instability threshold for Thwaites Glacier determines rate of mass loss for entire basin. Geophys. Res. Lett. 45, 809–816 (2018).

  87. 87.

    Pattyn, F., Favier, L. & Sun, S. Progress in numerical modeling of Antarctic ice-sheet dynamics. Curr. Clim. Change Rep. 3, 174–184 (2017). Review of recent advances in modelling of the AIS that highlights our current understanding of ice-dynamical processes that are key to future predictions.

  88. 88.

    Stewart, A. L., Klocker, A. & Menemenlis, D. Circum-Antarctic shoreward heat transport derived from an eddy- and tide-resolving simulation. Geophys. Res. Lett. 45, 834–845 (2018).

  89. 89.

    Niwano, M. et al. NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland ice sheet. Cryosphere 12, 635–655 (2018).

  90. 90.

    Durand, G. & Pattyn, F. Reducing uncertainties in projections of Antarctic ice mass loss. Cryosphere 9, 2043–2055 (2015).

  91. 91.

    Cornford, S. L. et al. Adaptive mesh, finite volume modeling of marine ice sheets. J. Comput. Phys. 232, 529–549 (2013).

  92. 92.

    Nowicki, S. M. J. et al. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. Geosci. Model Dev. 9, 4521–4545 (2016). Outline of the new phase of ice-sheet model intercomparisons linked to CMIP6.

  93. 93.

    Vernon, C. L. et al. Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere 7, 599–614 (2013).

  94. 94.

    Nowicki, S. et al. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. J. Geophys. Res. Earth Surf. 118, 1025–1044 (2013).

  95. 95.

    Goelzer, H. et al. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere 12, 1433–1460 (2018).

  96. 96.

    Zickfeld, K., Solomon, S. & Gilford, D. M. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases. Proc. Natl Acad. Sci. USA 114, 657–662 (2017).

  97. 97.

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

  98. 98.

    Thomas, Z. A. Using natural archives to detect climate and environmental tipping points in the Earth System. Quat. Sci. Rev. 152, 60–71 (2016).

  99. 99.

    Robinson, A., Calov, R. & Ganopolski, A. An efficient regional energy-moisture balance model for simulation of the Greenland ice sheet response to climate change. Cryosphere 4, 129–144 (2010).

  100. 100.

    Ganopolski, A., Winkelmann, R. & Schellnhuber, H. J. Critical insolation-CO2 relation for diagnosing past and future glacial inception. Nature 534, 1–2 (2016).

Download references


This paper is the result of the 2017 ISMASS (Ice-Sheet Mass Balance and Sea Level) workshop held in Brussels (Belgium), co-sponsored by WCRP/CliC (, IASC and SCAR. H.G., P.K.M. and M.v.d.B. acknowledge support from the NESSC.

Author information

F.P. and C.R. coordinated the study. F.P., C.R. and E.H. led the writing, and all authors contributed to the writing and discussion of ideas. J.T.M.L., P.K.M. and L.D.T. contributed the data that are presented in Fig. 1. L.F. designed Fig. 3. N.R.G. provided the data that are presented in Fig. 4.

Competing interests

The authors declare no competing interests.

Correspondence to Frank Pattyn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Annual mean surface mass fluxes as a function of global mean temperature anomalies.
Fig. 2: GrIS stability as a function of the imposed regional summer temperature anomaly with best-estimate model parameter values.
Fig. 3: MISI and MICI as main drivers for potential (partial) collapse of the AIS.
Fig. 4: AIS stability as a function of the imposed regional annual mean temperature anomaly.