Climate change and interconnected risks to sustainable development in the Mediterranean

Abstract

Recent accelerated climate change has exacerbated existing environmental problems in the Mediterranean Basin that are caused by the combination of changes in land use, increasing pollution and declining biodiversity. For five broad and interconnected impact domains (water, ecosystems, food, health and security), current change and future scenarios consistently point to significant and increasing risks during the coming decades. Policies for the sustainable development of Mediterranean countries need to mitigate these risks and consider adaptation options, but currently lack adequate information — particularly for the most vulnerable southern Mediterranean societies, where fewer systematic observations schemes and impact models are based. A dedicated effort to synthesize existing scientific knowledge across disciplines is underway and aims to provide a better understanding of the combined risks posed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Historic warming of the atmosphere globally and in the Mediterranean Basin.
Fig. 2: Evolution of the Mediterranean regional climate towards warmer and drier conditions.
Fig. 3: Annual natural renewable water resources in the main Mediterranean watersheds.

References

  1. 1.

    Kelley, C. P. et al. Climate change in the Fertile Crescent and implication of the recent Syrian drought. Proc. Natl Acad. Sci. USA 112, 3241–3246 (2015). Analyses recent drought episodes in Syria and neighbouring countries and suggests a link to economic and political instability.

    CAS  Google Scholar 

  2. 2.

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2013).

  3. 3.

    Vicente-Serrano, S. M. et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 9, 044001 (2014).

    Google Scholar 

  4. 4.

    Macias, D., Garcia-Gorriz, E. & Stips, A. Understanding the causes of recent warming in Mediterranean waters. How much could be attributed to climate change? PLoS ONE 8, e81591 (2013).

    Google Scholar 

  5. 5.

    Tsimplis, M. N. et al. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans 118, 944–952 (2013). Demonstrates the relative contribution of multiple forcings to Mediterranean sea-level changes for the period 1993–2011.

    Google Scholar 

  6. 6.

    Calafat, F. M. & Gomis, D. Reconstruction of Mediterranean sea level fields for the period 1945–2000. Glob. Planet. Change 66, 225–234 (2009).

    Google Scholar 

  7. 7.

    Meyssignac, B. et al. Two-dimensional reconstruction of the Mediterranean sea level over 1970–2006 from tide gage data and regional ocean circulation model outputs. Glob. Planet. Change 77, 49–61 (2011).

    Google Scholar 

  8. 8.

    Meier, K. J. S., Beaufort, L., Heussner, S. & Ziveri, P. The role of ocean acidification in Emiliania huxleyi coccolith thinning in the Mediterranean Sea. Biogeosciences 11, 2857–2869 (2014).

    CAS  Google Scholar 

  9. 9.

    Kapsenberg, L., Alliouane, S., Gazeau, F., Mousseau, L. & Gattuso, J.-P. Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea. Ocean Sci. 13, 411–426 (2017).

    Google Scholar 

  10. 10.

    Lionello, P. & Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 18, 1481–1493 (2018).

    Google Scholar 

  11. 11.

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016). Relates global CO 2 emission trajectories to regional climate change and climate impacts, for the Mediterranean Basin and also for other regions.

    CAS  Google Scholar 

  12. 12.

    Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).

    Google Scholar 

  13. 13.

    Zittis, G., Hadjinicolaou, P., Fnais, M. & Lelieveld, J. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg. Environ. Change 16, 1863–1876 (2015).

    Google Scholar 

  14. 14.

    Vautard, R. et al. The European climate under a 2 °C global warming. Environ. Res. Lett. 9, 034006 (2014).

    Google Scholar 

  15. 15.

    Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).

    Google Scholar 

  16. 16.

    Schleussner, C.-F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

    Google Scholar 

  17. 17.

    Toreti, A. et al. Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys. Res. Lett. 40, 4887–4892 (2013).

    Google Scholar 

  18. 18.

    Toreti, A. & Naveau, P. On the evaluation of climate model simulated precipitation extremes. Environ. Res. Lett. 10, 014012 (2015).

    Google Scholar 

  19. 19.

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 13 (IPCC, Cambridge Univ. Press, 2013).

  20. 20.

    Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl Acad. Sci. USA 106, 21527–21532 (2009).

    CAS  Google Scholar 

  21. 21.

    Jordà, G. & Gomis, D. On the interpretation of the steric and mass components of sea level variability: the case of the Mediterranean basin. J. Geophys. Res. Oceans 118, 953–963 (2013).

    Google Scholar 

  22. 22.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    CAS  Google Scholar 

  23. 23.

    Le Bars, D. Uncertainty in sea level rise projections due to the dependence between contributors. Preprint at EarthArXiv: https://doi.org/10.17605/OSF.IO/UVW3S (2018).

  24. 24.

    Adloff, F. et al. Improving sea level simulation in Mediterranean regional climate models. Clim. Dynam. 51, 1167–1178 (2017).

    Google Scholar 

  25. 25.

    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dynam. 45, 2775–2802 (2015).

    Google Scholar 

  26. 26.

    Aucelli, P. P. C. et al. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain—southern Italy). Estuar. Coast. Shelf Sci. 198B, 597–609 (2017).

    Google Scholar 

  27. 27.

    Enriquez, A. R., Marcos, M., Alvarez-Ellacuria, A., Orfila, A. & Gomis, D. Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Nat. Hazards Earth Syst. Sci. 17, 1075–1089 (2017).

    Google Scholar 

  28. 28.

    Magnan, A. K. et al. Implications of the Paris Agreement for the ocean. Nat. Clim. Change 6, 732–735 (2016). Comprehensive overview of multiple sensitivities in the global ocean system to various levels of projected climate change.

    Google Scholar 

  29. 29.

    Palmiéri, J. et al. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12, 781–802 (2015).

    Google Scholar 

  30. 30.

    Middle East & North Africa Data (World Bank Group, accessed 3 September 2017); https://data.worldbank.org/region/middle-east-and-north-africa

  31. 31.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS  Google Scholar 

  32. 32.

    Jiménez Cisneros, B. E. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2014).

  33. 33.

    Kovats, R. S. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 23 (IPCC, Cambridge Univ. Press, 2014).

  34. 34.

    Tsanis, I. K., Koutroulis, A. G., Daliakopoulos, I. N. & Jacob, D. Severe climate-induced water shortage and extremes in Crete. Climatic Change 106, 667–677 (2011).

    CAS  Google Scholar 

  35. 35.

    Bucak, T. et al. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Sci. Total Environ. 581–582, 413–425 (2017).

    Google Scholar 

  36. 36.

    García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta–Martínez, T. & Beguería, S. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 105(3–4), 121–139 (2011).

    Google Scholar 

  37. 37.

    Ludwig, W., Bouwman, A. F., Dumont, F. & Lespinas, F. Water and nutrient fluxes from major Mediterranean and Black Sea rivers: past and future trends and their implications for the basin-scale budgets. Glob. Biogeochem. Cycles 24, GB0A13 (2010). Comprehensive study of hydrological and water quality changes for Mediterranean catchments in the past and for projected future conditions.

    Google Scholar 

  38. 38.

    Hermoso, V. & Clavero, M. Threatening processes and conservation management of endemic freshwater fish in the Mediterranean basin: a review. Mar. Freshwat. Res. 62, 244–254 (2011).

    CAS  Google Scholar 

  39. 39.

    Gonçalvès, J., Petersen, J., Deschamps, P., Hamelin, B. & Baba-Sy, O. Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys. Res. Lett. 40, 2673–2678 (2013).

    Google Scholar 

  40. 40.

    Albiac, J., Esteban, E., Tapia, J. & Rivas, E. in Drought in Arid and Semi-Arid Regions: A Multi-Disciplinary and Cross-Country Perspective (eds Schwabe, K. et al.) 323–339 (Springer, Dordrecht, 2013).

  41. 41.

    Iglesias, A., Garrote, L., Quiroga, S. & Moneo, M. From climate change impacts to the development of adaptation strategies: challenges for agriculture in Europe. Climatic Change 112, 143–168 (2012).

    Google Scholar 

  42. 42.

    Fader, M., Shi, S., Von Bloh, W., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973 (2016).

    CAS  Google Scholar 

  43. 43.

    Gaume, E. et al. in The Mediterranean Region under Climate Change. A Scientific Update 133–144 (IRD Editions, 2016).

  44. 44.

    Llasat, M. C., Marcos, R., Turco, M., Gilabert, J. & Llasat-Botija, M. Flash floods trends versus convective precipitation in a Mediterranean region. J. Hydrol. 541, 24–37 (2016).

    Google Scholar 

  45. 45.

    Alfieri, L., Burek, P., Feyen, L. & Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 19, 2247–2260 (2015).

    Google Scholar 

  46. 46.

    Kundzewicz, Z. W. et al. Differences in flood hazard projections in Europe—their causes and consequences for decision making. Hydrol. Sci. J. 62, 1–14 (2017).

    Google Scholar 

  47. 47.

    Llasat, M. C. et al. Towards a database on societal impact of Mediterranean floods in the framework of the HYMEX project. Nat. Hazards Earth Syst. Sci. 13, 1–14 (2013).

    Google Scholar 

  48. 48.

    Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Google Scholar 

  49. 49.

    Guiot, J. & Cramer, W. Climate change: the 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354, 465–468 (2016). Using a process-based ecosystem model fitted to pollen-based vegetation reconstructions, this study demonstrates that only a 1.5 °C global climate trajectory allows Mediterranean land ecosystems to remain in the variability range of the past 10,000 years.

    CAS  Google Scholar 

  50. 50.

    Gouveia, C. M., Trigo, R. M., Beguería, S. & Vicente-Serrano, S. M. Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators. Glob. Planet. Change 151, 15–27 (2017).

    Google Scholar 

  51. 51.

    Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil communities and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).

    Google Scholar 

  52. 52.

    Duguy, B. et al. in Regional Assessment of Climate Change in the Mediterranean Vol. 2 (eds Navarra, A. & Tubiana, L.) 101–134 (Springer, Dordrecht, 2013).

  53. 53.

    Turco, M., Llasat, M. C., von Hardenberg, J. & Provenzale, A. Climate change impacts on wildfires in a Mediterranean environment. Climatic Change 125, 369–380 (2014). Distinguishes climatic from non-climatic forcings of Mediterranean fire dynamics.

    Google Scholar 

  54. 54.

    Ruffault, J., Moron, V., Trigo, R. M. & Curt, T. Objective identification of multiple large fire climatologies: an application to a Mediterranean ecosystem. Environ. Res. Lett. 11, 7 (2016).

    Google Scholar 

  55. 55.

    Zacharias, I. & Zamparas, M. Mediterranean temporary ponds. A disappearing ecosystem. Biodivers. Conserv. 19, 3827–3834 (2010). One of only very few studies of Mediterranean freshwater ecosystems under climate change.

    Google Scholar 

  56. 56.

    Klausmeyer, K. R. & Shaw, M. R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 4, e6392 (2009).

    Google Scholar 

  57. 57.

    Peñuelas, J. et al. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob. Change Biol. 19, 2303–2338 (2013).

    Google Scholar 

  58. 58.

    Peñuelas, J. et al. Impacts of global change on Mediterranean forests and their services. Forests 8, 463 (2017).

    Google Scholar 

  59. 59.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Google Scholar 

  60. 60.

    Doblas-Miranda, E. et al. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: beyond drought effects. Glob. Planet. Change 148, 42–54 (2017).

    Google Scholar 

  61. 61.

    Garcia-Nieto, A. P. et al. Impacts of urbanization around Mediterranean cities: changes in ecosystem service supply. Ecol. Ind. 91, 589–606 (2018).

    Google Scholar 

  62. 62.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009). Documents climate-driven mass mortality events in marine Mediterranean ecosystems.

    Google Scholar 

  63. 63.

    Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi, E. & Boero, F. Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS ONE 9, e115655 (2014).

    Google Scholar 

  64. 64.

    Marbà, N., Jorda, G., Agustí, S., Girard, S. C. & Duarte, C. M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2, 56 (2015).

    Google Scholar 

  65. 65.

    Climate Warming and Related Changes in Mediterranean Marine Biota Workshop Monograph 35 (ed. Briand, F.) (CIESM, 2008).

  66. 66.

    Azzurro, E., Moschella, P. & Maynou, F. Tracking signals of change in Mediterranean fish diversity based on local ecological knowledge. PLoS ONE 6, e24885 (2011).

    CAS  Google Scholar 

  67. 67.

    Lloret, J. et al. How a multidisciplinary approach involving ethnoecology, biology and fisheries can help explain the spatio-temporal changes in marine fish abundance resulting from climate change. Glob. Ecol. Biogeogr. 24, 448–461 (2015).

    Google Scholar 

  68. 68.

    Parravicini, V. et al. Climate change and warm-water species at the northwestern boundary of the Mediterranean Sea. Mar. Ecol. Evol. Persp. 36, 897–909 (2015).

    Google Scholar 

  69. 69.

    Chevaldonné, P. & Lejeusne, C. Regional warming-induced species shift in north-west Mediterranean marine caves. Ecol. Lett. 6, 371–379 (2003). One of the earliest studies demonstrating impacts of climate fluctuations on northwest Mediterranean marine biota.

    Google Scholar 

  70. 70.

    Milazzo, M. et al. Warming-related shifts in the distribution of two competing coastal wrasses. Mar. Environ. Res. 120, 55–67 (2016).

    CAS  Google Scholar 

  71. 71.

    Galil, B. S., Marchini, A. & Occhipinti-Ambrogi, A. East is east and West is west? Management of marine bioinvasions in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 201, 7–16 (2018).

    Google Scholar 

  72. 72.

    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).

    Google Scholar 

  73. 73.

    Gattuso, J.-P. et al. Contrasting future for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Google Scholar 

  74. 74.

    Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

    CAS  Google Scholar 

  75. 75.

    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).

    CAS  Google Scholar 

  76. 76.

    Linares, C. et al. Persistent acidification drives major distribution shifts in marine benthic ecosystems. Proc. R. Soc. B 282, 20150587 (2015).

    CAS  Google Scholar 

  77. 77.

    Rodrigues, L. C. et al. Sensitivity of Mediterranean bivalve mollusc aquaculture to climate change, ocean acidification, and other environmental pressures: findings from a producer survey. J. Shellfish Res. 34, 1161–1176 (2015).

    Google Scholar 

  78. 78.

    Liquete, C., Piroddi, C., Macias, D., Druon, J.-N. & Zulian, G. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches. Sci. Rep. 6, 34162 (2016). One of the earliest comprehensive assessments of ecosystem service provisioning changes in the Mediterranean Sea.

    CAS  Google Scholar 

  79. 79.

    Martín-López, B. et al. in Routledge Handbook of Ecosystem Services (eds Potschin, M. et al.) 405–414 (Routledge, London, 2016).

  80. 80.

    Paciello, M. C. (ed.) Building Sustainable Agriculture for Food Security in the Euro-Mediterranean Area: Challenges and Policy Options (IAI & OCP, 2015).

  81. 81.

    Piante, C. & Ody, D. Blue Growth in the Mediterranean Sea: The Challenge of Good Environmental Status (MedTrends Project, WWF-France, 2015).

  82. 82.

    Deryng, D. et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Change 6, 786–790 (2016).

    Google Scholar 

  83. 83.

    Giannakopoulos, C. et al. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Change 68, 209–224 (2009).

    Google Scholar 

  84. 84.

    Tanasijevic, L. et al. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricult. Water Manage. 144, 54–68 (2014).

    Google Scholar 

  85. 85.

    Gabaldón-Leal, C. et al. Impacts of changes in the mean and extreme temperatures caused by climate change on olive flowering in southern Spain. Int. J. Climatol. 37, 940–957 (2017).

    Google Scholar 

  86. 86.

    Ponti, L., Gutierrez, A. P., Ruti, P. M. & Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc. Natl Acad. Sci. USA 111, 5598–5603 (2014).

    CAS  Google Scholar 

  87. 87.

    Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C. & Santos, J. A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Change Biol. 22, 3774–3788 (2016).

    Google Scholar 

  88. 88.

    Funes, I. et al. Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agricult. Water Manage. 164, 19–27 (2016).

    Google Scholar 

  89. 89.

    Arbex de Castro Vilas Boas, A., Page, D., Giovinazzo, R., Bertin, N. & Fanciullino, A.-L. Combined effects of irrigation regime, genotype, and harvest stage determine tomato fruit quality and aptitude for processing into puree. Front. Plant Sci. 8, 1725 (2017).

    Google Scholar 

  90. 90.

    Barbagallo, R. N., Di Silvestro, I. & Patanè, C. Yield, physicochemical traits, antioxidant pattern, polyphenol oxidase activity and total visual quality of field-grown processing tomato cv. Brigade as affected by water stress in Mediterranean climate. J. Sci. Food Agric. 93, 1449–1457 (2013).

    CAS  Google Scholar 

  91. 91.

    Fitzgerald, G. J. et al. Elevated atmospheric [CO2] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Glob. Change Biol. 22, 2269–2284 (2016).

    Google Scholar 

  92. 92.

    Fernando, N. et al. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics. Food Chem. 170, 448–454 (2015).

    CAS  Google Scholar 

  93. 93.

    Miraglia, M. et al. Climate change and food safety: an emerging issue with special focus on Europe. Food Chem. Toxicol. 47, 1009–1021 (2009).

    CAS  Google Scholar 

  94. 94.

    Link, P. M., Kominek, J. & Scheffran, J. Impacts of sea level rise on the coastal zones of Egypt. Main. Geogr. Stud. 55, 79–94 (2012).

    Google Scholar 

  95. 95.

    Bernués, A., Ruiz, R., Olaizola, A., Villalba, D. & Casasus, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: synergies and trade-offs. Livest. Sci. 139, 44–57 (2011). Comprehensive analysis of Mediterranean livestock system changes subjected to global change forcings.

    Google Scholar 

  96. 96.

    Herrero, M. & Thornton, P. K. Livestock and global change: emerging issues for sustainable food systems. Proc. Natl Acad. Sci. USA 110, 20878–20881 (2013).

    CAS  Google Scholar 

  97. 97.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    CAS  Google Scholar 

  98. 98.

    Weindl, I. et al. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environ. Res. Lett. 10, 094021 (2015).

    Google Scholar 

  99. 99.

    FAO Livestock contribution to food security in the Near East and North Africa. In FAO Regional Conference for the Near East, 33th Session (FAO, 2016); http://www.fao.org/3/a-mp852e.pdf

  100. 100.

    Addressing Agricultural Import Dependence in the Middle East-North Africa Region Through the Year 2050 (INRA & Pluriagri, 2015).

  101. 101.

    Tzanatos, E., Raitsos, D. E., Triantafyllou, G., Somarakis, S. & Tsonis, A. A. Indications of a climate effect on Mediterranean fisheries. Climatic Change 122, 41–54 (2014).

    Google Scholar 

  102. 102.

    Maritime Affairs and Fisheries: On the State of Fish Stocks (EC, 2014); https://go.nature.com/2OWQJHr

  103. 103.

    Coll, M. et al. The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).

    Google Scholar 

  104. 104.

    Communication from the Commission to the European Parliament and the Council Concerning a Consultation on Fishing Opportunities for 2015 Under the Common Fisheries Policy (EC, 2014).

  105. 105.

    Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741–752 (2015).

    Google Scholar 

  106. 106.

    Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Model. 325, 57–66 (2016).

    CAS  Google Scholar 

  107. 107.

    Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. Change Biol. 16, 3233–3245 (2010).

    Google Scholar 

  108. 108.

    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

    Google Scholar 

  109. 109.

    Smith, K. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2014).

  110. 110.

    Kuglitsch, F. G. et al. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 37, L04802 (2010).

    Google Scholar 

  111. 111.

    Royé, D. The effects of hot nights on mortality in Barcelona. Int. J. Biometeorol. 61, 2127–2140 (2017).

    Google Scholar 

  112. 112.

    Heat Stress (CDC, 2015); http://www.cdc.gov/niosh/topics/heatstress

  113. 113.

    Paz, S., Negev, M., Clermont, A. & Green, M. S. Health aspects of climate change in cities with Mediterranean climate, and local adaptation plans. Int. J. Environ. Res. Public Health 13, 438 (2016).

    Google Scholar 

  114. 114.

    Paravantis, J., Santamouris, M., Cartalis, C., Efthymiou, C. & Kontoulis, N. Mortality associated with high ambient temperatures, heatwaves, and the urban heat island in Athens, Greece. Sustainability 9, 606 (2017).

    Google Scholar 

  115. 115.

    Fouillet, A. et al. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol. 37, 309–317 (2008).

    CAS  Google Scholar 

  116. 116.

    Parham, P. E. et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Phil. Trans. R. Soc. Lond. B 370, 20130551 (2015).

    Google Scholar 

  117. 117.

    Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).

    CAS  Google Scholar 

  118. 118.

    Negev, M. et al. Impacts of climate change on vector borne diseases in the Mediterranean Basin: implications for preparedness and adaptation policy. Int. J. Environ. Res. Pub. Health 12, 6745–6770 (2015).

    Google Scholar 

  119. 119.

    Rohr, J. R. et al. Frontiers in climate change–disease research. Trends Ecol. Evol. 26, 270–277 (2011).

    Google Scholar 

  120. 120.

    Paz, S. et al. Permissive summer temperatures of the 2010 European West Nile Fever upsurge. PLoS ONE 8, e56398 (2013).

    CAS  Google Scholar 

  121. 121.

    Semenza, J. C. et al. Climate change projections of West Nile Virus infections in Europe: implications for blood safety practices. Environ. Health 15 15(Suppl. 1), 28 (2016).

    Google Scholar 

  122. 122.

    Clusters of Autochthonous Chikungunya Cases in Italy, First Update — 9 October 2017 (ECDC, 2017); https://go.nature.com/2xYz7DI

  123. 123.

    The Climatic Suitability for Dengue Transmission in Continental Europe (ECDC, 2012); https://go.nature.com/2In38BK

  124. 124.

    Annual Epidemiological Report 2016: Dengue Fever (ECDC, 2016); https://go.nature.com/2OV7nHe

  125. 125.

    Adger, W. N. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2014).

  126. 126.

    Hallegatte, S. An Exploration of the Link Between Development, Economic Growth, and Natural Risk (World Bank, 2014).

  127. 127.

    Becker, A., Inoue, S., Fischer, M. & Schwegler, B. Climate change impacts on international seaports: knowledge, perceptions, and planning efforts among port administrators. Climatic Change 110, 5–29 (2012).

    Google Scholar 

  128. 128.

    Lionello, P., Conte, D., Marzo, L. & Scarascia, L. The contrasting effect of increasing mean sea level and decreasing storminess on the maximum water level during storms along the coast of the Mediterranean Sea in the mid 21st century. Glob. Planet. Change 151, 80–91 (2016).

    Google Scholar 

  129. 129.

    Sanchez-Arcilla, A. et al. A review of potential physical impacts on harbours in the Mediterranean Sea under climate change. Reg. Environ. Change 16, 2471–2484 (2016).

    Google Scholar 

  130. 130.

    Sierra, J. P., Casanovas, I., Mösso, C., Mestres, M. & Sanchez-Arcilla, A. Vulnerability of Catalan (NW Mediterranean) ports to wave overtopping due to different scenarios of sea level rise. Reg. Environ. Change 16, 1457–1468 (2016).

    Google Scholar 

  131. 131.

    Nicholls, R. J. et al. Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes: Exposure Estimates Environment Working Paper No. 1 (OECD Publishing, 2008).

  132. 132.

    Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013).

    Google Scholar 

  133. 133.

    Satta, A., Puddu, M., Venturini, S. & Giupponi, C. Assessment of coastal risks to climate change related impacts at the regional scale: the case of the Mediterranean region. Int. J. Disast. Risk Reduct. 24, 284–296 (2017).

    Google Scholar 

  134. 134.

    Tolba, M. K. & Saab, N. W. Impact of Climate Change on Arab Countries (AFED, 2009).

  135. 135.

    Ciscar, J. C. et al. Climate Impacts in Europe: The JRC PESETA II Project EUR 26586EN (JRC, EC, 2014); https://go.nature.com/2In0CLO

  136. 136.

    Hegazi, A. M., Afifi, M. Y., Elwan, A. A., Shorbagy, M. A. E. L. & El-Demerdashe, S. (eds) Egyptian National Action Program to Combat Desertification (Desert Research Center, Ministry of Agriculture and Land Reclamation, 2005); http://www.unccd.int/ActionProgrammes/egypt-eng2005.pdf

  137. 137.

    Rubio, J. L., Safriel, U., Daussa, R., Blum, W. & Pedrazzini, F. Water Scarcity, Land Degradation and Desertification in the Mediterranean Region (NATO Science for Peace and Security Series C: Environmental Security, Springer, 2009).

  138. 138.

    Abahussain, A. A. et al. Desertification in the Arab Region: analysis of current status and trends. J. Arid Environm. 51, 521–545 (2002).

    Google Scholar 

  139. 139.

    Renaud, F., Dun, O., Warner, K. & Bogardi, J. A decision framework for environmentally induced migration. Int. Migrat. 49(S1), e5–e29 (2011).

    Google Scholar 

  140. 140.

    Gleick, P. H. Water, drought, climate change, and conflict in Syria. Weather Clim. Soc. 6, 331–340 (2014).

    Google Scholar 

  141. 141.

    Warner, K. et al. in Climate Change: Addressing the Impact on Human Security (ed. Dokos, T.) 62–84 (Hellenic Republic, Ministry of Foreign Affairs, 2008).

  142. 142.

    Wodon, Q., Liverani, A., Joseph, G. & Bougnoux, N. (eds) Climate Change and Migration: Evidence from the Middle East and North Africa (World Bank, 2014).

  143. 143.

    Brzoska, M. & Fröhlich, C. Climate change, migration and violent conflict: vulnerabilities, pathways and adaptation strategies. Migrat. Dev. 5, 190–210 (2016).

    Google Scholar 

  144. 144.

    Oppenheimer, M. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 19 (IPCC, Cambridge Univ. Press, 2014).

  145. 145.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 6223 (2015).

    Google Scholar 

  146. 146.

    Sea Water Desalination: To What Extent is it a Freshwater Solution in the Mediterranean? (Plan Bleu, 2010).

Download references

Acknowledgements

This work has benefited from discussions with V. Alary (CIRAD, France), W.W.L. Cheung (Univ. British Columbia, Canada), K. Radunsky (Umweltbundesamt, Austria), J. Le Tellier (Plan Bleu, France), C. Webster (MedPAN, France) and many participants at five MedECC workshops between October 2016 and April 2018. Coordination was supported by the Laboratory of Excellence OT-Med (A*MIdex project no. 11-IDEX-0001-02).

Author information

Affiliations

Authors

Contributions

W.C. and J.G. developed the assessment protocol and convened the author team. All authors contributed sectoral knowledge and text. W.C. wrote the paper.

Corresponding author

Correspondence to Wolfgang Cramer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cramer, W., Guiot, J., Fader, M. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Clim Change 8, 972–980 (2018). https://doi.org/10.1038/s41558-018-0299-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing