Abstract

Recent accelerated climate change has exacerbated existing environmental problems in the Mediterranean Basin that are caused by the combination of changes in land use, increasing pollution and declining biodiversity. For five broad and interconnected impact domains (water, ecosystems, food, health and security), current change and future scenarios consistently point to significant and increasing risks during the coming decades. Policies for the sustainable development of Mediterranean countries need to mitigate these risks and consider adaptation options, but currently lack adequate information — particularly for the most vulnerable southern Mediterranean societies, where fewer systematic observations schemes and impact models are based. A dedicated effort to synthesize existing scientific knowledge across disciplines is underway and aims to provide a better understanding of the combined risks posed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kelley, C. P. et al. Climate change in the Fertile Crescent and implication of the recent Syrian drought. Proc. Natl Acad. Sci. USA 112, 3241–3246 (2015). Analyses recent drought episodes in Syria and neighbouring countries and suggests a link to economic and political instability.

  2. 2.

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2013).

  3. 3.

    Vicente-Serrano, S. M. et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 9, 044001 (2014).

  4. 4.

    Macias, D., Garcia-Gorriz, E. & Stips, A. Understanding the causes of recent warming in Mediterranean waters. How much could be attributed to climate change? PLoS ONE 8, e81591 (2013).

  5. 5.

    Tsimplis, M. N. et al. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans 118, 944–952 (2013). Demonstrates the relative contribution of multiple forcings to Mediterranean sea-level changes for the period 1993–2011.

  6. 6.

    Calafat, F. M. & Gomis, D. Reconstruction of Mediterranean sea level fields for the period 1945–2000. Glob. Planet. Change 66, 225–234 (2009).

  7. 7.

    Meyssignac, B. et al. Two-dimensional reconstruction of the Mediterranean sea level over 1970–2006 from tide gage data and regional ocean circulation model outputs. Glob. Planet. Change 77, 49–61 (2011).

  8. 8.

    Meier, K. J. S., Beaufort, L., Heussner, S. & Ziveri, P. The role of ocean acidification in Emiliania huxleyi coccolith thinning in the Mediterranean Sea. Biogeosciences 11, 2857–2869 (2014).

  9. 9.

    Kapsenberg, L., Alliouane, S., Gazeau, F., Mousseau, L. & Gattuso, J.-P. Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea. Ocean Sci. 13, 411–426 (2017).

  10. 10.

    Lionello, P. & Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 18, 1481–1493 (2018).

  11. 11.

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016). Relates global CO 2 emission trajectories to regional climate change and climate impacts, for the Mediterranean Basin and also for other regions.

  12. 12.

    Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).

  13. 13.

    Zittis, G., Hadjinicolaou, P., Fnais, M. & Lelieveld, J. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg. Environ. Change 16, 1863–1876 (2015).

  14. 14.

    Vautard, R. et al. The European climate under a 2 °C global warming. Environ. Res. Lett. 9, 034006 (2014).

  15. 15.

    Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).

  16. 16.

    Schleussner, C.-F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

  17. 17.

    Toreti, A. et al. Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys. Res. Lett. 40, 4887–4892 (2013).

  18. 18.

    Toreti, A. & Naveau, P. On the evaluation of climate model simulated precipitation extremes. Environ. Res. Lett. 10, 014012 (2015).

  19. 19.

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 13 (IPCC, Cambridge Univ. Press, 2013).

  20. 20.

    Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl Acad. Sci. USA 106, 21527–21532 (2009).

  21. 21.

    Jordà, G. & Gomis, D. On the interpretation of the steric and mass components of sea level variability: the case of the Mediterranean basin. J. Geophys. Res. Oceans 118, 953–963 (2013).

  22. 22.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

  23. 23.

    Le Bars, D. Uncertainty in sea level rise projections due to the dependence between contributors. Preprint at EarthArXiv: https://doi.org/10.17605/OSF.IO/UVW3S (2018).

  24. 24.

    Adloff, F. et al. Improving sea level simulation in Mediterranean regional climate models. Clim. Dynam. 51, 1167–1178 (2017).

  25. 25.

    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dynam. 45, 2775–2802 (2015).

  26. 26.

    Aucelli, P. P. C. et al. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain—southern Italy). Estuar. Coast. Shelf Sci. 198B, 597–609 (2017).

  27. 27.

    Enriquez, A. R., Marcos, M., Alvarez-Ellacuria, A., Orfila, A. & Gomis, D. Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Nat. Hazards Earth Syst. Sci. 17, 1075–1089 (2017).

  28. 28.

    Magnan, A. K. et al. Implications of the Paris Agreement for the ocean. Nat. Clim. Change 6, 732–735 (2016). Comprehensive overview of multiple sensitivities in the global ocean system to various levels of projected climate change.

  29. 29.

    Palmiéri, J. et al. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12, 781–802 (2015).

  30. 30.

    Middle East & North Africa Data (World Bank Group, accessed 3 September 2017); https://data.worldbank.org/region/middle-east-and-north-africa

  31. 31.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

  32. 32.

    Jiménez Cisneros, B. E. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2014).

  33. 33.

    Kovats, R. S. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 23 (IPCC, Cambridge Univ. Press, 2014).

  34. 34.

    Tsanis, I. K., Koutroulis, A. G., Daliakopoulos, I. N. & Jacob, D. Severe climate-induced water shortage and extremes in Crete. Climatic Change 106, 667–677 (2011).

  35. 35.

    Bucak, T. et al. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Sci. Total Environ. 581–582, 413–425 (2017).

  36. 36.

    García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta–Martínez, T. & Beguería, S. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 105(3–4), 121–139 (2011).

  37. 37.

    Ludwig, W., Bouwman, A. F., Dumont, F. & Lespinas, F. Water and nutrient fluxes from major Mediterranean and Black Sea rivers: past and future trends and their implications for the basin-scale budgets. Glob. Biogeochem. Cycles 24, GB0A13 (2010). Comprehensive study of hydrological and water quality changes for Mediterranean catchments in the past and for projected future conditions.

  38. 38.

    Hermoso, V. & Clavero, M. Threatening processes and conservation management of endemic freshwater fish in the Mediterranean basin: a review. Mar. Freshwat. Res. 62, 244–254 (2011).

  39. 39.

    Gonçalvès, J., Petersen, J., Deschamps, P., Hamelin, B. & Baba-Sy, O. Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys. Res. Lett. 40, 2673–2678 (2013).

  40. 40.

    Albiac, J., Esteban, E., Tapia, J. & Rivas, E. in Drought in Arid and Semi-Arid Regions: A Multi-Disciplinary and Cross-Country Perspective (eds Schwabe, K. et al.) 323–339 (Springer, Dordrecht, 2013).

  41. 41.

    Iglesias, A., Garrote, L., Quiroga, S. & Moneo, M. From climate change impacts to the development of adaptation strategies: challenges for agriculture in Europe. Climatic Change 112, 143–168 (2012).

  42. 42.

    Fader, M., Shi, S., Von Bloh, W., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973 (2016).

  43. 43.

    Gaume, E. et al. in The Mediterranean Region under Climate Change. A Scientific Update 133–144 (IRD Editions, 2016).

  44. 44.

    Llasat, M. C., Marcos, R., Turco, M., Gilabert, J. & Llasat-Botija, M. Flash floods trends versus convective precipitation in a Mediterranean region. J. Hydrol. 541, 24–37 (2016).

  45. 45.

    Alfieri, L., Burek, P., Feyen, L. & Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 19, 2247–2260 (2015).

  46. 46.

    Kundzewicz, Z. W. et al. Differences in flood hazard projections in Europe—their causes and consequences for decision making. Hydrol. Sci. J. 62, 1–14 (2017).

  47. 47.

    Llasat, M. C. et al. Towards a database on societal impact of Mediterranean floods in the framework of the HYMEX project. Nat. Hazards Earth Syst. Sci. 13, 1–14 (2013).

  48. 48.

    Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

  49. 49.

    Guiot, J. & Cramer, W. Climate change: the 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354, 465–468 (2016). Using a process-based ecosystem model fitted to pollen-based vegetation reconstructions, this study demonstrates that only a 1.5 °C global climate trajectory allows Mediterranean land ecosystems to remain in the variability range of the past 10,000 years.

  50. 50.

    Gouveia, C. M., Trigo, R. M., Beguería, S. & Vicente-Serrano, S. M. Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators. Glob. Planet. Change 151, 15–27 (2017).

  51. 51.

    Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil communities and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).

  52. 52.

    Duguy, B. et al. in Regional Assessment of Climate Change in the Mediterranean Vol. 2 (eds Navarra, A. & Tubiana, L.) 101–134 (Springer, Dordrecht, 2013).

  53. 53.

    Turco, M., Llasat, M. C., von Hardenberg, J. & Provenzale, A. Climate change impacts on wildfires in a Mediterranean environment. Climatic Change 125, 369–380 (2014). Distinguishes climatic from non-climatic forcings of Mediterranean fire dynamics.

  54. 54.

    Ruffault, J., Moron, V., Trigo, R. M. & Curt, T. Objective identification of multiple large fire climatologies: an application to a Mediterranean ecosystem. Environ. Res. Lett. 11, 7 (2016).

  55. 55.

    Zacharias, I. & Zamparas, M. Mediterranean temporary ponds. A disappearing ecosystem. Biodivers. Conserv. 19, 3827–3834 (2010). One of only very few studies of Mediterranean freshwater ecosystems under climate change.

  56. 56.

    Klausmeyer, K. R. & Shaw, M. R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 4, e6392 (2009).

  57. 57.

    Peñuelas, J. et al. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob. Change Biol. 19, 2303–2338 (2013).

  58. 58.

    Peñuelas, J. et al. Impacts of global change on Mediterranean forests and their services. Forests 8, 463 (2017).

  59. 59.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

  60. 60.

    Doblas-Miranda, E. et al. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: beyond drought effects. Glob. Planet. Change 148, 42–54 (2017).

  61. 61.

    Garcia-Nieto, A. P. et al. Impacts of urbanization around Mediterranean cities: changes in ecosystem service supply. Ecol. Ind. 91, 589–606 (2018).

  62. 62.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009). Documents climate-driven mass mortality events in marine Mediterranean ecosystems.

  63. 63.

    Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi, E. & Boero, F. Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS ONE 9, e115655 (2014).

  64. 64.

    Marbà, N., Jorda, G., Agustí, S., Girard, S. C. & Duarte, C. M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2, 56 (2015).

  65. 65.

    Climate Warming and Related Changes in Mediterranean Marine Biota Workshop Monograph 35 (ed. Briand, F.) (CIESM, 2008).

  66. 66.

    Azzurro, E., Moschella, P. & Maynou, F. Tracking signals of change in Mediterranean fish diversity based on local ecological knowledge. PLoS ONE 6, e24885 (2011).

  67. 67.

    Lloret, J. et al. How a multidisciplinary approach involving ethnoecology, biology and fisheries can help explain the spatio-temporal changes in marine fish abundance resulting from climate change. Glob. Ecol. Biogeogr. 24, 448–461 (2015).

  68. 68.

    Parravicini, V. et al. Climate change and warm-water species at the northwestern boundary of the Mediterranean Sea. Mar. Ecol. Evol. Persp. 36, 897–909 (2015).

  69. 69.

    Chevaldonné, P. & Lejeusne, C. Regional warming-induced species shift in north-west Mediterranean marine caves. Ecol. Lett. 6, 371–379 (2003). One of the earliest studies demonstrating impacts of climate fluctuations on northwest Mediterranean marine biota.

  70. 70.

    Milazzo, M. et al. Warming-related shifts in the distribution of two competing coastal wrasses. Mar. Environ. Res. 120, 55–67 (2016).

  71. 71.

    Galil, B. S., Marchini, A. & Occhipinti-Ambrogi, A. East is east and West is west? Management of marine bioinvasions in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 201, 7–16 (2018).

  72. 72.

    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).

  73. 73.

    Gattuso, J.-P. et al. Contrasting future for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

  74. 74.

    Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

  75. 75.

    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).

  76. 76.

    Linares, C. et al. Persistent acidification drives major distribution shifts in marine benthic ecosystems. Proc. R. Soc. B 282, 20150587 (2015).

  77. 77.

    Rodrigues, L. C. et al. Sensitivity of Mediterranean bivalve mollusc aquaculture to climate change, ocean acidification, and other environmental pressures: findings from a producer survey. J. Shellfish Res. 34, 1161–1176 (2015).

  78. 78.

    Liquete, C., Piroddi, C., Macias, D., Druon, J.-N. & Zulian, G. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches. Sci. Rep. 6, 34162 (2016). One of the earliest comprehensive assessments of ecosystem service provisioning changes in the Mediterranean Sea.

  79. 79.

    Martín-López, B. et al. in Routledge Handbook of Ecosystem Services (eds Potschin, M. et al.) 405–414 (Routledge, London, 2016).

  80. 80.

    Paciello, M. C. (ed.) Building Sustainable Agriculture for Food Security in the Euro-Mediterranean Area: Challenges and Policy Options (IAI & OCP, 2015).

  81. 81.

    Piante, C. & Ody, D. Blue Growth in the Mediterranean Sea: The Challenge of Good Environmental Status (MedTrends Project, WWF-France, 2015).

  82. 82.

    Deryng, D. et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Change 6, 786–790 (2016).

  83. 83.

    Giannakopoulos, C. et al. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Change 68, 209–224 (2009).

  84. 84.

    Tanasijevic, L. et al. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricult. Water Manage. 144, 54–68 (2014).

  85. 85.

    Gabaldón-Leal, C. et al. Impacts of changes in the mean and extreme temperatures caused by climate change on olive flowering in southern Spain. Int. J. Climatol. 37, 940–957 (2017).

  86. 86.

    Ponti, L., Gutierrez, A. P., Ruti, P. M. & Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc. Natl Acad. Sci. USA 111, 5598–5603 (2014).

  87. 87.

    Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C. & Santos, J. A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Change Biol. 22, 3774–3788 (2016).

  88. 88.

    Funes, I. et al. Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agricult. Water Manage. 164, 19–27 (2016).

  89. 89.

    Arbex de Castro Vilas Boas, A., Page, D., Giovinazzo, R., Bertin, N. & Fanciullino, A.-L. Combined effects of irrigation regime, genotype, and harvest stage determine tomato fruit quality and aptitude for processing into puree. Front. Plant Sci. 8, 1725 (2017).

  90. 90.

    Barbagallo, R. N., Di Silvestro, I. & Patanè, C. Yield, physicochemical traits, antioxidant pattern, polyphenol oxidase activity and total visual quality of field-grown processing tomato cv. Brigade as affected by water stress in Mediterranean climate. J. Sci. Food Agric. 93, 1449–1457 (2013).

  91. 91.

    Fitzgerald, G. J. et al. Elevated atmospheric [CO2] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Glob. Change Biol. 22, 2269–2284 (2016).

  92. 92.

    Fernando, N. et al. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics. Food Chem. 170, 448–454 (2015).

  93. 93.

    Miraglia, M. et al. Climate change and food safety: an emerging issue with special focus on Europe. Food Chem. Toxicol. 47, 1009–1021 (2009).

  94. 94.

    Link, P. M., Kominek, J. & Scheffran, J. Impacts of sea level rise on the coastal zones of Egypt. Main. Geogr. Stud. 55, 79–94 (2012).

  95. 95.

    Bernués, A., Ruiz, R., Olaizola, A., Villalba, D. & Casasus, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: synergies and trade-offs. Livest. Sci. 139, 44–57 (2011). Comprehensive analysis of Mediterranean livestock system changes subjected to global change forcings.

  96. 96.

    Herrero, M. & Thornton, P. K. Livestock and global change: emerging issues for sustainable food systems. Proc. Natl Acad. Sci. USA 110, 20878–20881 (2013).

  97. 97.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

  98. 98.

    Weindl, I. et al. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environ. Res. Lett. 10, 094021 (2015).

  99. 99.

    FAO Livestock contribution to food security in the Near East and North Africa. In FAO Regional Conference for the Near East, 33th Session (FAO, 2016); http://www.fao.org/3/a-mp852e.pdf

  100. 100.

    Addressing Agricultural Import Dependence in the Middle East-North Africa Region Through the Year 2050 (INRA & Pluriagri, 2015).

  101. 101.

    Tzanatos, E., Raitsos, D. E., Triantafyllou, G., Somarakis, S. & Tsonis, A. A. Indications of a climate effect on Mediterranean fisheries. Climatic Change 122, 41–54 (2014).

  102. 102.

    Maritime Affairs and Fisheries: On the State of Fish Stocks (EC, 2014); https://go.nature.com/2OWQJHr

  103. 103.

    Coll, M. et al. The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).

  104. 104.

    Communication from the Commission to the European Parliament and the Council Concerning a Consultation on Fishing Opportunities for 2015 Under the Common Fisheries Policy (EC, 2014).

  105. 105.

    Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741–752 (2015).

  106. 106.

    Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Model. 325, 57–66 (2016).

  107. 107.

    Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. Change Biol. 16, 3233–3245 (2010).

  108. 108.

    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

  109. 109.

    Smith, K. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2014).

  110. 110.

    Kuglitsch, F. G. et al. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 37, L04802 (2010).

  111. 111.

    Royé, D. The effects of hot nights on mortality in Barcelona. Int. J. Biometeorol. 61, 2127–2140 (2017).

  112. 112.

    Heat Stress (CDC, 2015); http://www.cdc.gov/niosh/topics/heatstress

  113. 113.

    Paz, S., Negev, M., Clermont, A. & Green, M. S. Health aspects of climate change in cities with Mediterranean climate, and local adaptation plans. Int. J. Environ. Res. Public Health 13, 438 (2016).

  114. 114.

    Paravantis, J., Santamouris, M., Cartalis, C., Efthymiou, C. & Kontoulis, N. Mortality associated with high ambient temperatures, heatwaves, and the urban heat island in Athens, Greece. Sustainability 9, 606 (2017).

  115. 115.

    Fouillet, A. et al. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol. 37, 309–317 (2008).

  116. 116.

    Parham, P. E. et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Phil. Trans. R. Soc. Lond. B 370, 20130551 (2015).

  117. 117.

    Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).

  118. 118.

    Negev, M. et al. Impacts of climate change on vector borne diseases in the Mediterranean Basin: implications for preparedness and adaptation policy. Int. J. Environ. Res. Pub. Health 12, 6745–6770 (2015).

  119. 119.

    Rohr, J. R. et al. Frontiers in climate change–disease research. Trends Ecol. Evol. 26, 270–277 (2011).

  120. 120.

    Paz, S. et al. Permissive summer temperatures of the 2010 European West Nile Fever upsurge. PLoS ONE 8, e56398 (2013).

  121. 121.

    Semenza, J. C. et al. Climate change projections of West Nile Virus infections in Europe: implications for blood safety practices. Environ. Health 15 15(Suppl. 1), 28 (2016).

  122. 122.

    Clusters of Autochthonous Chikungunya Cases in Italy, First Update — 9 October 2017 (ECDC, 2017); https://go.nature.com/2xYz7DI

  123. 123.

    The Climatic Suitability for Dengue Transmission in Continental Europe (ECDC, 2012); https://go.nature.com/2In38BK

  124. 124.

    Annual Epidemiological Report 2016: Dengue Fever (ECDC, 2016); https://go.nature.com/2OV7nHe

  125. 125.

    Adger, W. N. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2014).

  126. 126.

    Hallegatte, S. An Exploration of the Link Between Development, Economic Growth, and Natural Risk (World Bank, 2014).

  127. 127.

    Becker, A., Inoue, S., Fischer, M. & Schwegler, B. Climate change impacts on international seaports: knowledge, perceptions, and planning efforts among port administrators. Climatic Change 110, 5–29 (2012).

  128. 128.

    Lionello, P., Conte, D., Marzo, L. & Scarascia, L. The contrasting effect of increasing mean sea level and decreasing storminess on the maximum water level during storms along the coast of the Mediterranean Sea in the mid 21st century. Glob. Planet. Change 151, 80–91 (2016).

  129. 129.

    Sanchez-Arcilla, A. et al. A review of potential physical impacts on harbours in the Mediterranean Sea under climate change. Reg. Environ. Change 16, 2471–2484 (2016).

  130. 130.

    Sierra, J. P., Casanovas, I., Mösso, C., Mestres, M. & Sanchez-Arcilla, A. Vulnerability of Catalan (NW Mediterranean) ports to wave overtopping due to different scenarios of sea level rise. Reg. Environ. Change 16, 1457–1468 (2016).

  131. 131.

    Nicholls, R. J. et al. Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes: Exposure Estimates Environment Working Paper No. 1 (OECD Publishing, 2008).

  132. 132.

    Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013).

  133. 133.

    Satta, A., Puddu, M., Venturini, S. & Giupponi, C. Assessment of coastal risks to climate change related impacts at the regional scale: the case of the Mediterranean region. Int. J. Disast. Risk Reduct. 24, 284–296 (2017).

  134. 134.

    Tolba, M. K. & Saab, N. W. Impact of Climate Change on Arab Countries (AFED, 2009).

  135. 135.

    Ciscar, J. C. et al. Climate Impacts in Europe: The JRC PESETA II Project EUR 26586EN (JRC, EC, 2014); https://go.nature.com/2In0CLO

  136. 136.

    Hegazi, A. M., Afifi, M. Y., Elwan, A. A., Shorbagy, M. A. E. L. & El-Demerdashe, S. (eds) Egyptian National Action Program to Combat Desertification (Desert Research Center, Ministry of Agriculture and Land Reclamation, 2005); http://www.unccd.int/ActionProgrammes/egypt-eng2005.pdf

  137. 137.

    Rubio, J. L., Safriel, U., Daussa, R., Blum, W. & Pedrazzini, F. Water Scarcity, Land Degradation and Desertification in the Mediterranean Region (NATO Science for Peace and Security Series C: Environmental Security, Springer, 2009).

  138. 138.

    Abahussain, A. A. et al. Desertification in the Arab Region: analysis of current status and trends. J. Arid Environm. 51, 521–545 (2002).

  139. 139.

    Renaud, F., Dun, O., Warner, K. & Bogardi, J. A decision framework for environmentally induced migration. Int. Migrat. 49(S1), e5–e29 (2011).

  140. 140.

    Gleick, P. H. Water, drought, climate change, and conflict in Syria. Weather Clim. Soc. 6, 331–340 (2014).

  141. 141.

    Warner, K. et al. in Climate Change: Addressing the Impact on Human Security (ed. Dokos, T.) 62–84 (Hellenic Republic, Ministry of Foreign Affairs, 2008).

  142. 142.

    Wodon, Q., Liverani, A., Joseph, G. & Bougnoux, N. (eds) Climate Change and Migration: Evidence from the Middle East and North Africa (World Bank, 2014).

  143. 143.

    Brzoska, M. & Fröhlich, C. Climate change, migration and violent conflict: vulnerabilities, pathways and adaptation strategies. Migrat. Dev. 5, 190–210 (2016).

  144. 144.

    Oppenheimer, M. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 19 (IPCC, Cambridge Univ. Press, 2014).

  145. 145.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 6223 (2015).

  146. 146.

    Sea Water Desalination: To What Extent is it a Freshwater Solution in the Mediterranean? (Plan Bleu, 2010).

Download references

Acknowledgements

This work has benefited from discussions with V. Alary (CIRAD, France), W.W.L. Cheung (Univ. British Columbia, Canada), K. Radunsky (Umweltbundesamt, Austria), J. Le Tellier (Plan Bleu, France), C. Webster (MedPAN, France) and many participants at five MedECC workshops between October 2016 and April 2018. Coordination was supported by the Laboratory of Excellence OT-Med (A*MIdex project no. 11-IDEX-0001-02).

Author information

Affiliations

  1. IMBE, Aix Marseille University, CNRS, IRD, Avignon University, Aix-en-Provence, France

    • Wolfgang Cramer
  2. Aix Marseille University, CNRS, IRD, INRA, College de France, CEREGE, Aix-en-Provence, France

    • Joël Guiot
  3. International Centre for Water Resources and Global Change, UNESCO, Federal Institute of Hydrology, Koblenz, Germany

    • Marianela Fader
  4. Institut Ciències del Mar, CSIC, Barcelona, Spain

    • Joaquim Garrabou
  5. Aix Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France

    • Joaquim Garrabou
  6. Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, Villefranche-sur-mer, France

    • Jean-Pierre Gattuso
  7. Institute for Sustainable Development and International Relations, Sciences Po, Paris, France

    • Jean-Pierre Gattuso
  8. Department of Agricultural Economics, Universidad Politécnica de Madrid, Madrid, Spain

    • Ana Iglesias
  9. Energy, Environment and Water Research Center, Cyprus Institute, Nicosia, Cyprus

    • Manfred A. Lange
  10. DiSTeBA, University of Salento, Lecce, Italy

    • Piero Lionello
  11. CMCC, Lecce, Italy

    • Piero Lionello
  12. Department of Applied Physics, University of Barcelona, Barcelona, Spain

    • Maria Carmen Llasat
  13. Department of Geography and Environmental Studies, University of Haifa, Haifa, Israel

    • Shlomit Paz
  14. Global Ecology Unit, CREAF-CSIC-UAB, Barcelona, Spain

    • Josep Peñuelas
  15. CREAF, Barcelona, Spain

    • Josep Peñuelas
  16. Faculté des Sciences, Université. Mohammed V, Rabat, Morocco

    • Maria Snoussi
  17. European Commission, Joint Research Centre, Ispra, Italy

    • Andrea Toreti
  18. School of Law, Hong Kong City University, Kowloon Tong, Hong Kong

    • Michael N. Tsimplis
  19. Climatology, Climate Dynamics and Climate Change, Department of Geography, Justus-Liebig Universität Gießen, Gießen, Germany

    • Elena Xoplaki

Authors

  1. Search for Wolfgang Cramer in:

  2. Search for Joël Guiot in:

  3. Search for Marianela Fader in:

  4. Search for Joaquim Garrabou in:

  5. Search for Jean-Pierre Gattuso in:

  6. Search for Ana Iglesias in:

  7. Search for Manfred A. Lange in:

  8. Search for Piero Lionello in:

  9. Search for Maria Carmen Llasat in:

  10. Search for Shlomit Paz in:

  11. Search for Josep Peñuelas in:

  12. Search for Maria Snoussi in:

  13. Search for Andrea Toreti in:

  14. Search for Michael N. Tsimplis in:

  15. Search for Elena Xoplaki in:

Contributions

W.C. and J.G. developed the assessment protocol and convened the author team. All authors contributed sectoral knowledge and text. W.C. wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Wolfgang Cramer.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0299-2