Radiative forcing by light-absorbing particles in snow

Abstract

As one of the brightest natural surfaces on Earth, the darkening of snow by light-absorbing particles (LAPs) — dust, black carbon or microbial growth — can trigger albedo feedbacks and accelerate snowmelt. Indeed, an increase in black carbon deposition following the industrial revolution has led to the recognition that LAP radiative forcing has contributed to a reduction in the global cryosphere, with corresponding climatic impacts. This Review synthesizes our current understanding of the distribution of radiative forcing by LAPs in snow, and discusses the challenges that need to be overcome to constrain global impacts, including the limited scope of local-scale observations, limitations of remote sensing technology and the representation of LAP-related processes in Earth system models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A representation of how LAPs impact snow albedo and net solar radiation.
Fig. 2: Variation in snow albedo across the range of snow reflectance for changing LAP content and snow grain size.
Fig. 3: A summary of RF values for LAPs in snow at the regional to global scale from observations and Earth system modelling.
Fig. 4: The global distribution of springtime RF by LAPs in snow from Earth system modelling.

References

  1. 1.

    Lemke, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 4 (IPCC, Cambridge Univ. Press, 2007).

  2. 2.

    Sturm, M., Goldstein, M. A. & Parr, C. Water and life from snow: a trillion dollar science question. Water Resour. Res. 53, 3534–3544 (2017).

    Article  Google Scholar 

  3. 3.

    Landsberg, H. E. Man-made climatic changes: man’s activities have altered the climate of urbanized areas and may affect global climate in the future. Science 170, 1265–1274 (1970).

    Article  CAS  Google Scholar 

  4. 4.

    Doherty, S. J. et al. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res. Atmos. 118, 5553–5569 (2013).

    Article  Google Scholar 

  5. 5.

    Skiles, S. M. & Painter, T. H. Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J. Glaciol. 63, 118–132 (2017).

    Article  Google Scholar 

  6. 6.

    Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett. 33, L03502 (2006).

    Google Scholar 

  7. 7.

    Bond, T. C., Doherty, S. J., Fahey, D. W. & Forster, P. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013).

    Article  CAS  Google Scholar 

  8. 8.

    McConnell, J. R. et al. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317, 1381–1384 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    Doherty, S., Warren, S., Grenfell, T., Clarke, A. & Brandt, R. Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys. 10, 11647–11680 (2010).

    Article  CAS  Google Scholar 

  10. 10.

    Ming, J. et al. Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos. Res. 92, 114–123 (2009).

    Article  CAS  Google Scholar 

  11. 11.

    Hegg, D. A. et al. Source attribution of black carbon in Arctic snow. Environ. Sci. Technol. 2009, 4016–4021 (2009).

    Article  CAS  Google Scholar 

  12. 12.

    Keegan, K. M., Albert, M. R., McConnell, J. R. & Baker, I. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proc. Natl Acad. Sci. USA 111, 7964–7967 (2014).

    Article  CAS  Google Scholar 

  13. 13.

    Kaspari, S., Skiles, S. M., Delaney, I., Dixon, D. & Painter, T. H. Accelerated glacier melt on snow dome, Mt. Olympus, Washington, USA due to deposition of black carbon and mineral dust from wildfire. J. Geophys. Res. Atmos. 120, 2793–2807 (2015).

    Article  Google Scholar 

  14. 14.

    Andreae, M. O. in World Survey of Climatology Vol. 16 (ed. Henderson-Sellers, A.) Ch. 10 (Elsevier Science, Amsterdam, 1995).

  15. 15.

    Tegen, I. & Schepanski, K. Climate feedback on aerosol emission and atmospheric concentrations. Curr. Clim. Change Rep. 4, 1–10 (2018).

    Article  Google Scholar 

  16. 16.

    Mahowald, N. M. et al. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 10, 10875–10893 (2010).

    Article  CAS  Google Scholar 

  17. 17.

    Franzén, L. G., Mattsson, J. O., Mårtensson, U., Nihlén, T. & Rapp, A. Yellow snow over the Alps and Subarctic from dust storm in Africa, March 1991. Ambio 23, 233–235 (1994).

    Google Scholar 

  18. 18.

    Painter, T. H. et al. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 34, L12502 (2007).

    Article  Google Scholar 

  19. 19.

    Thompson, L. G. et al. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science 289, 1916–1919 (2000).

    Article  CAS  Google Scholar 

  20. 20.

    Di Mauro, B. et al. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J. Geophys. Res. Atmos. 120, 6080–6097 (2015).

    Article  Google Scholar 

  21. 21.

    Skiles, S. M., Painter, T. H. & Okin, G. S. A method to retrieve the spectral complex refractive index and single scattering optical properties of dust deposited in mountain snow. J. Glaciol. 63, 133–147 (2017).

    Article  Google Scholar 

  22. 22.

    Skiles, S. M. & Painter, T. H. Assessment of radiative forcing by light absorbing particles in snow from in situ observations with radiative transfer modeling. J. Hydrometeorol. https://doi.org/10.1175/JHM-D-18-0072.1 (2018).

    Article  Google Scholar 

  23. 23.

    Sterle, K. M., McConnell, J. R., Dozier, J., Edwards, R. & Flanner, M. Retention and radiative forcing of black carbon in the Eastern Sierra Nevada snow. Cryosphere 7, 365–374 (2013).

    Article  Google Scholar 

  24. 24.

    Kaspari, S., Painter, T. H., Gysel, M., Skiles, S. M. & Schwikowski, M. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khombu, Nepal and estimated radiative forcings. Atmos. Chem. Phys. 14, 8089–8103 (2014).

    Article  CAS  Google Scholar 

  25. 25.

    Hoham, R. W. & Duval, B. in Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems (ed. Jones, H. G.) 166–226 (Cambridge Univ. Press, Cambridge, 2001).

  26. 26.

    Williamson, C. et al. Ice algal bloom development on the surface of the Greenland Ice Sheet. FEMS Microbiol. Ecol. 94, fiy025 (2018).

    Article  Google Scholar 

  27. 27.

    Dial, R. J., Ganey, G. Q. & Skiles, S. M. What color should glacier algae be?. FEMS Microbiol. Ecol. 53, fiy007 (2018).

    Google Scholar 

  28. 28.

    Thomas, W. H. & Duval, B. Sierra Nevada, California, U. S. A., snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arctic Alpine Res. 27, 389–399 (1995).

    Article  Google Scholar 

  29. 29.

    Painter, T. H. et al. Detection and quantification of snow algae with an airborne imaging spectrometer. Appl. Environ. Microbiol. 67, 5267–5272 (2001).

    Article  CAS  Google Scholar 

  30. 30.

    Ganey, G. Q., Loso, M. G., Burgess, A. B. & Dial, R. J. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nat. Geosci. 10, 754–759 (2017).

    Article  CAS  Google Scholar 

  31. 31.

    Qian, Y. et al. Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrologic impact. Adv. Atmos. Sci. 32, 64–91 (2015).

    Article  CAS  Google Scholar 

  32. 32.

    Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008).

    Article  CAS  Google Scholar 

  33. 33.

    Gertler, C. G., Puppala, S. P., Panday, A., Stumm, D. & Shea, J. Black carbon and the Himalayan cryosphere: a review. Atmos. Environ. 125, 404–417 (2016).

    Article  CAS  Google Scholar 

  34. 34.

    Qian, Y., Flanner, M. G., Leung, L. R. & Wang, W. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys. 11, 1929–1948 (2011).

    Article  CAS  Google Scholar 

  35. 35.

    Kaspari, S. et al. Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD. Geophys. Res. Lett. 38, L04703 (2011).

    Article  CAS  Google Scholar 

  36. 36.

    Ming, J. et al. Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys. 8, 1343–1352 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    Wang, M. et al. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing. Atmos. Chem. Phys. 15, 1191–1204 (2015).

    Article  CAS  Google Scholar 

  38. 38.

    Zhang, R. et al. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmos. Chem. Phys. 15, 6205–6223 (2015).

    Article  CAS  Google Scholar 

  39. 39.

    Ginot, P. et al. A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers. Cryosphere 8, 1479–1496 (2014).

    Article  Google Scholar 

  40. 40.

    Painter, T. H., Bryant, A. & Skiles, S. M. Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett. 39, L17502 (2012).

    Article  Google Scholar 

  41. 41.

    Matt, F. & Burkhart, J. Assessing satellite derived radiative forcing from snow impurities through inverse hydrologic modelling. Geophys. Res. Lett. 45, 3531–3541 (2018).

    Article  Google Scholar 

  42. 42.

    Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112, D11202 (2007).

    Article  CAS  Google Scholar 

  43. 43.

    Flanner, M. G. et al. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 9, 2481–2497 (2009).

    Article  CAS  Google Scholar 

  44. 44.

    Wang, X., Doherty, S. J. & Huang, J. Black carbon and other light‐absorbing impurities in snow across Northern China. J. Geophys. Res. Atmos. 118, 1471–1492 (2013).

    Article  CAS  Google Scholar 

  45. 45.

    Qian, Y., Wang, H., Zhang, R., Flanner, M. G. & Rasch, P. J. A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environ. Res. Lett. 9, 064001 (2014).

    Article  Google Scholar 

  46. 46.

    Dang, C. et al. Measurements of light‐absorbing particles in snow across the Arctic, North America, and China: effects on surface albedo. J. Geophys. Res. Atmos. 122, 10149–10168 (2017).

    Article  CAS  Google Scholar 

  47. 47.

    Zhao, C. et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements. Atmos. Chem. Phys. 14, 11475–11491 (2014).

    Article  CAS  Google Scholar 

  48. 48.

    De Angelisi, M. & Gaudichet, A. Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years. Tellus B 43, 61–75 (1991).

    Article  Google Scholar 

  49. 49.

    Di Mauro, B. et al. Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps). Cryosphere 11, 2393–2409 (2017).

    Article  Google Scholar 

  50. 50.

    Gabbi, J., Huss, M., Bauder, A., Cao, F. & Schwikowski, M. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. Cryosphere 9, 1385–1400 (2015).

    Article  Google Scholar 

  51. 51.

    Painter, T. H. et al. End of the Little Ice Age in the Alps forced by industrial black carbon. Proc. Natl Acad. Sci. USA 110, 15216–15221 (2013).

    Article  Google Scholar 

  52. 52.

    Oerlemans, J., Giesen, R. & Van den Broeke, M. Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). J. Glaciol. 55, 729–736 (2009).

    Article  Google Scholar 

  53. 53.

    Wittmann, M. et al. Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland. Cryosphere 11, 741–754 (2017).

    Article  Google Scholar 

  54. 54.

    Flanner, M., Gardner, A., Eckhardt, S., Stohl, A. & Perket, J. Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions. J. Geophys. Res. Atmos. 119, 9481–9491 (2014).

    Article  CAS  Google Scholar 

  55. 55.

    Björnsson, H. et al. Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age. Geophys. Res. Lett. 40, 1546–1550 (2013).

    Article  Google Scholar 

  56. 56.

    Tuzet, F. et al. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow. Cryosphere 11, 2633–2653 (2017).

    Article  Google Scholar 

  57. 57.

    Di Mauro, B. et al. On the role of Saharan dust events on snow season duration in the European Alps. In 20th EGU General Assembly 12169 (EGU, 2018).

  58. 58.

    Matt, F. N., Burkhart, J. F. & Pietikäinen, J.-P. Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale. Hydrol. Earth Syst. Sci. 22, 179–201 (2018).

    Article  Google Scholar 

  59. 59.

    Ginoux, P. et al. Analysis of aerosol deposition on snowpack over global high mountain ranges. In 20th EGU General Assembly 10062 (EGU, 2018).

  60. 60.

    Qian, Y., Gustafson, W. I., Leung, L. R. & Ghan, S. J. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res. 114, D03108 (2009).

    Article  Google Scholar 

  61. 61.

    Oaida, C. M. et al. Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western US. J. Geophys. Res. Atmos. 120, 3228–3248 (2015).

    Article  Google Scholar 

  62. 62.

    Hadley, O., Corrigan, C., Kirchstetter, T., Cliff, S. & Ramanathan, V. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos. Chem. Phys. 10, 7505–7513 (2010).

    Article  CAS  Google Scholar 

  63. 63.

    Wu, C., Liu, X., Lin, Z., Rahimi-Esfarjani, S. R. & Lu, Z. Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations. Atmos. Chem. Phys. 18, 511–533 (2018).

    Article  CAS  Google Scholar 

  64. 64.

    Seidel, F. C., Rittger, K., Skiles, S. M., Molotch, N. P. & Painter, T. H. Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy. Cryosphere 10, 1229–1244 (2016).

    Article  Google Scholar 

  65. 65.

    Neff, J. C. et al. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 1, 189–195 (2008).

    Article  CAS  Google Scholar 

  66. 66.

    Skiles, S. M., Painter, T. H., Deems, J., Landry, C. & Bryant, A. Dust radiative forcing in snow of the Upper Colorado River Basin. Part II: interannual variability in radiative forcing and snowmelt rates. Water Resour. Res. 48, W07522 (2012).

    Article  Google Scholar 

  67. 67.

    Painter, T. H. et al. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl Acad. Sci. USA 107, 17125–17130 (2010).

    Article  Google Scholar 

  68. 68.

    Bryant, A., Painter, T. H., Deems, J. & Bender, S. M. Hydrologic response to dust radiative forcing in snow in the Upper Colorado River Basin. Geophys. Res. Lett. 40, 3945–3949 (2013).

    Article  Google Scholar 

  69. 69.

    Minder, J. R., Letcher, T. W. & Skiles, S. M. An evaluation of high‐resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow‐albedo feedback. J. Geophys. Res. Atmos. 121, 9069–9088 (2016).

    Article  Google Scholar 

  70. 70.

    Clark, A. D. & Noone, K. J. Soot in the Arctic snowpack: a cause for perturbations in radiative transfer. Atmos. Environ. 19, 2045–2053 (1985).

    Article  Google Scholar 

  71. 71.

    Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B. & Hunke, E. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Clim. 25, 1413–1430 (2012).

    Article  Google Scholar 

  72. 72.

    Ryan, J. C. et al. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nat. Commun. 9, 1065 (2018).

    Article  CAS  Google Scholar 

  73. 73.

    Tedstone, A. J. et al. Dark ice dynamics of the south-west Greenland Ice Sheet. Cryosphere 11, 2491–2506 (2017).

    Article  Google Scholar 

  74. 74.

    Stibal, M. et al. Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys. Res. Lett. 44, 11463–11471 (2017).

    Article  Google Scholar 

  75. 75.

    Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866–872 (2014).

    Article  Google Scholar 

  76. 76.

    Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA 101, 423–428 (2004).

    Article  CAS  Google Scholar 

  77. 77.

    Boucher, O. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 571–657 (IPCC, Cambridge Univ. Press, 2013).

  78. 78.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2013).

  79. 79.

    Breider, T. J. et al. Multidecadal trends in aerosol radiative forcing over the Arctic: contribution of changes in anthropogenic aerosol to Arctic warming since 1980. J. Geophys. Res. Atmos. 122, 3573–3594 (2017).

    Article  Google Scholar 

  80. 80.

    Legrand, M. et al. Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores. J. Geophys. Res. Atmos. 112, D23S11 (2007).

    Article  Google Scholar 

  81. 81.

    Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L. & Lelieveld, J. Aerosol optical depth trend over the Middle East. Atmos. Chem. Phys. 16, 5063–5073 (2016).

    Article  CAS  Google Scholar 

  82. 82.

    Hadley, O. L. & Kirchstetter, T. W. Black-carbon reduction of snow albedo. Nat. Clim. Change 2, 437–440 (2012).

    Article  CAS  Google Scholar 

  83. 83.

    Skiles, S. M. Dust and Black Carbon Radiative Forcing Controls on Snowmelt in the Colorado River Basin. PhD thesis, Univ. California-Los Angeles (2014).

  84. 84.

    Warren, S. G. Can black carbon in snow be detected by remote sensing? J. Geophys. Res. Atmos. 118, 779–786 (2013).

    Article  CAS  Google Scholar 

  85. 85.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

Download references

Acknowledgements

Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. CNRM/CEN is part of Labex OSUG@2020 (ANR-10-LABX-56). Work by M.D. on LAP in snow is funded by an ANR JCJC EBONI grant (ANR-16-CE01-0006). J.M.C. acknowledges funding from the UK NERC grant ‘Black and Bloom’ (NE/M021025/1) and the Rolex Awards for Enterprise.

Author information

Affiliations

Authors

Contributions

S.M.M. drafted the initial manuscript, and incorporated content from M.F. on Earth system modelling, J.M.C. on microbial/biological radiative forcing, M.D. on radiative forcing by LAPs in snow in Europe and T.H.P. on remote sensing. All authors contributed to editing, revising and improving the Review.

Corresponding author

Correspondence to S. McKenzie Skiles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skiles, S.M., Flanner, M., Cook, J.M. et al. Radiative forcing by light-absorbing particles in snow. Nature Clim Change 8, 964–971 (2018). https://doi.org/10.1038/s41558-018-0296-5

Download citation

Further reading