Review Article | Published:

Snow–atmosphere coupling in the Northern Hemisphere


Local and remote impacts of seasonal snow cover on atmospheric circulation have been explored extensively, with observational and modelling efforts focusing on how Eurasian autumn snow-cover variability potentially drives Northern Hemisphere atmospheric circulation via the generation of deep, planetary-scale atmospheric waves. Despite climate modelling advances, models remain challenged to reproduce the proposed sequence of processes by which snow cover can influence the atmosphere, calling into question the robustness of this coupling. Here, we summarize the current level of understanding of snow–atmosphere coupling, and the implications of this interaction under future climate change. Projected patterns of snow-cover variability and altered stratospheric conditions suggest a need for new model experiments to isolate the effect of projected changes in snow on the atmosphere.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Cohen, J. Snow cover and climate. Weather 49, 150–156 (1994).

  2. 2.

    Gutzler, D. S. & Rosen, R. D. Interannual variability of wintertime snow cover across the Northern Hemisphere. J. Clim. 5, 1441–1448 (1992).

  3. 3.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  4. 4.

    Brutel-Vuilmet, C., Ménégoz, M. & Krinner, G. An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere 7, 67–80 (2013).

  5. 5.

    Clark, M. P. & Serreze, M. C. Effects of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean. J. Clim. 13, 3700–3710 (2000).

  6. 6.

    Cohen, J. & Entekhabi, D. The influence of snow cover on Northern Hemisphere climate variability. Atmos. Ocean 39, 35–53 (2001).

  7. 7.

    Gong, G., Entekhabi, D. & Cohen, J. Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J. Clim. 16, 3917–3931 (2003). Modelling study that reproduces the snow–(N)AO teleconnection and the stratospheric pathway in an AGCM, using observed snow anomalies.

  8. 8.

    Fletcher, C. G., Kushner, P. J. & Cohen, J. Stratospheric control of the extratropical circulation response to surface forcing. Geophys. Res. Lett. 34, L21802 (2007).

  9. 9.

    Fletcher, C. G., Hardiman, S. C., Kushner, P. J. & Cohen, J. The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Clim. 22, 1208–1222 (2009).

  10. 10.

    Orsolini, J. Y. & Kvamstø, N. G. Role of Eurasian snow cover in wintertime circulation: decadal simulations forced with satellite observations. J. Geophys. Res. 114, 19108 (2009).

  11. 11.

    Allen, R. J. & Zender, C. S. Forcing of the Arctic Oscillation by Eurasian snow cover. J. Clim. 24, 6528–6539 (2011).

  12. 12.

    Peings, Y., Saint-Martin, D. & Douville, H. A numerical sensitivity study of the Siberian snow influence on the northern annular mode. J. Clim. 25, 592–607 (2012).

  13. 13.

    Klingaman, N. P., Hanson, B. & Leathers, D. J. A teleconnection between forced Great Plains snow cover and European winter climate. J. Clim. 21, 2466–2483 (2008).

  14. 14.

    Ge, Y. & Gong, G. North American snow depth and climate teleconnection patterns. J. Clim. 22, 217–233 (2009).

  15. 15.

    Sobolowski, S., Gong, G. & Ting, M. Modeled climate state and dynamic responses to anomalous North American snow cover. J. Clim. 23, 785–799 (2010).

  16. 16.

    Henderson, G. R., Leathers, D. J. & Hanson, B. Circulation response to Eurasian versus North American anomalous snow scenarios in the Northern Hemisphere with an AGCM coupled to a slab ocean model. J. Clim. 26, 1502–1515 (2013).

  17. 17.

    Peings, Y., Brun, E., Mauvais, V. & Douville, H. How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophys. Res. Lett. 40, 183–188 (2013).

  18. 18.

    Furtado, J. C., Cohen, J. L., Butler, A. H., Riddle, E. E. & Kumar, A. Eurasian snow cover variability and links to winter climate in the CMIP5 models. Clim. Dynam. 45, 2591–2605 (2015). Investigates the snow–(N)AO teleconnection in CMIP5 GCMs and shows the lack of linkage in the models.

  19. 19.

    Peings, Y., Douville, H., Colin, J., Saint Martin, D. & Magnusdottir, G. Snow–(N)AO teleconnection and its modulation by the Quasi-Biennial Oscillation. J. Clim. 30, 10211–10235 (2017). Explores the possible role of the QBO in modulating the snow–(N)AO teleconnection and explaining its non-stationarity.

  20. 20.

    Douville, H., Peings, Y. & Saint-Martin, D. Snow-(N)AO relationship revisited over the whole twentieth century. Geophys. Res. Lett. 43, 569–577 (2017). Explores the snow–(NAO) teleconnection in various reanalysis datasets, and discusses potential causes for its non-stationarity.

  21. 21.

    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).

  22. 22.

    Barnes, E. A. & Screen, J. A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Clim. Change 6, 277–286 (2015).

  23. 23.

    Cohen, J. & Rind, D. The effect of snow cover on climate. J. Clim. 4, 689–706 (1991).

  24. 24.

    Ross, B. & Walsh, J. Synoptic-scale influences of snow-cover and sea ice. Mon. Weath. Rev 114, 1795–1810 (1986).

  25. 25.

    Barnett, T., Dumenil, L., Schlese, U., Roeckner, E. & Latif, M. The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci. 46, 661–685 (1989).

  26. 26.

    Walland, D. J. & Simmonds, I. Modelled atmospheric response to changes in Northern Hemisphere snow cover. Clim. Dynam. 13, 25–34 (1996).

  27. 27.

    Watanabe, M. & Nitta, T. Relative impacts of snow and sea surface temperature anomalies on an extreme phase in the winter atmospheric circulation. J. Clim. 11, 2837–2857 (1998).

  28. 28.

    Watanabe, M. & Nitta, T. Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J. Clim. 12, 494–509 (1999).

  29. 29.

    Cohen, J., Saito, K. & Entekhabi, D. The role of the Siberian high in Northern Hemisphere climate variability. Geophys. Res. Lett. 28, 299–302 (2001).

  30. 30.

    Cohen, J. & Entekhabi, D. Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett. 26, 345–348 (1999). Identifies a statistical link between the extent of snow in fall over Siberia and the following winter (N)AO.

  31. 31.

    Bojariu, R. & Gimeno, L. The role of snow cover fluctuations in multiannual NAO persistence. Geophys. Res. Lett. 30, 1156 (2003).

  32. 32.

    Saito, K., Cohen, J. & Entekhabi, D. Evolution of atmospheric response to early-season Eurasian snow cover anomalies. Mon. Weath. Rev. 129, 2746–2760 (2001). Proposes a physical mechanism for the observed snow–(N)AO linkage, involving upward wave-activity anomalies and a stratospheric pathway.

  33. 33.

    Thompson, D. W. J. & Wallace, J. M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300 (1998).

  34. 34.

    Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim 13, 1000–1016 (2000).

  35. 35.

    Gong, G., Entekhabi, D. & Cohen, J. Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophys. Res. Lett. 30, 1848 (2003).

  36. 36.

    Gong, G., Entekhabi, D. & Cohen, J. Orographic constraints on a modeled Siberian snow-tropospheric-stratospheric teleconnection pathway. J. Clim. 17, 1176–1189 (2004).

  37. 37.

    Gong, G., Entekhabi, D. & Cohen, J. Sensitivity of atmospheric response to modeled snow anomaly characteristics. J. Geophys. Res. 109, D06107 (2004).

  38. 38.

    Dutra, E., Schär, C., Viterbo, P. & Miranda, P. M. A. Land atmosphere coupling associated with snow cover. Geophys. Res. Lett. 38, L15707 (2011).

  39. 39.

    Gong, G., Entekhabi, D. & Cohen, J. A large-ensemble model study of the wintertime AO–NAO and the role of interannual snow perturbations. J. Clim. 15, 3488–3499 (2002).

  40. 40.

    Smith, K. L., Kushner, P. J. & Cohen, J. The role of linear interference in Northern Annular Mode variability associated with Eurasian snow cover extent. J. Clim. 24, 6185–6202 (2011). Reveals the importance of the linear interference mechanism in the snow–(N)AO teleconnection.

  41. 41.

    Screen, J. A., Deser, C., Simmonds, I. & Tomas, R. Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim. Dynam. 43, 333–344 (2014).

  42. 42.

    Hardiman, S. C., Kushner, P. J. & Cohen, J. Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. J. Geophys. Res. 113, D21123 (2008).

  43. 43.

    Nishii, K., Nakamura, H. & Orsolini, Y. J. Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys. Res. Lett. 37, L13805 (2010).

  44. 44.

    Smith, K. L. & Kushner, P. J. Linear interference and the initiation of extratropical stratosphere-troposphere interactions. J. Geophys Res. 117, D13107 (2012).

  45. 45.

    Foster, J., Owe, M. & Rango, A. Snow cover and temperature relationships in North America and Eurasia. J. Clim. Appl. Meteor. 22, 460–469 (1983).

  46. 46.

    Cohen, J. L. & Saito K. Eurasian snow cover, more skillful in predicting U.S. winter climate than the NAO/AO? Geophys. Res. Lett. 30, 2190 (2003).

  47. 47.

    Cohen, J., Salstein, D. & Saito, K. A dynamical framework to understand and predict the major Northern Hemisphere mode. Geophys. Res. Lett. 29, 1412 (2002).

  48. 48.

    Cohen, J., Barlow, M., Kushner, P. J. & Saito, K. Stratosphere-troposphere coupling and links with Eurasian land surface variability. J. Clim. 20, 5335–5343 (2007).

  49. 49.

    Cohen, J. et al. Linking Siberian snow cover to precursors of stratospheric variability. J. Clim. 27, 5422–5432 (2014).

  50. 50.

    Zhang, J., Tian, W., Chipperfield, M., Xie, F. & Huang, J. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Clim. Change 6, 1094–1099 (2016).

  51. 51.

    Kretschmer, M. et al. More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Am. Meteorol. Soc. 99, 49–60 (2017).

  52. 52.

    Seviour, W. J. M. Weakening and shift of the Arctic stratospheric polar vortex: internal variability or forced response? Geophys. Res. Lett. 44, 3365–3373 (2017).

  53. 53.

    Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).

  54. 54.

    Deser, C., Simpson, I. R., McKinnon, K. A. & Phillips, A. S. The Northern Hemisphere extra-tropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly? J. Clim. 30, 5059–5082 (2017).

  55. 55.

    Gershunov, A., Schneider, A. N. & Barnett, T. Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: signal or noise? J. Clim. 14, 2486–2492 (2001).

  56. 56.

    Krasting, J. P., Broccoli, A. J., Dixon, K. W. & Lanzante, J. R. Future changes in Northern Hemisphere snowfall. J. Clim. 26, 7813–7828 (2013).

  57. 57.

    Takala, M., Pulliainen, J., Metsamaki, S. J. & Koskinen, J. T. Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Trans. Geosci. Remote Sens. 47, 2996–3007 (2009).

  58. 58.

    Brown, R. D. & Derksen, C. Is Eurasian October snow cover extent increasing? Environ. Res. Lett. 8, 024006 (2013).

  59. 59.

    Mudryk, L. R., Kushner, P. J., Derksen, C. & Thackeray, C. Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett. 44, 919–926 (2017).

  60. 60.

    Hori, M. et al. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 191, 402–418 (2017).

  61. 61.

    Ghatak, D., Frei, A., Gong, G., Stroeve, J. & Robinson, D. On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. J. Geophys. Res. 115, D24105 (2010).

  62. 62.

    Alexander, M. A., Tomas, R., Deser, C. & Lawrence, D. M. The atmospheric response to projected terrestrial snow changes in the late twenty-first century. J. Clim. 23, 6430–6437 (2010). Explores how projected future changes in snow cover may affect the Northern Hemisphere climate at the end of the twenty-first century.

  63. 63.

    Fyfe, J. C., Boer, G. J. & Flato, G. M. The Arctic and Antarctic Oscillations and their projected changes under global warming. Geophys. Res. Lett. 26, 1601–1604 (1999).

  64. 64.

    Gillett, N. P. et al. How linear is the Arctic Oscillation response to greenhouse gases? J. Geophys. Res. Atmos. 107(D3), 4022 (2002).

  65. 65.

    Miller, R. L., Schmidt, G. A. & Shindel, D. T. Forced annular changes in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. 111, D18101 (2006).

  66. 66.

    Gillett, N. P. & Fyfe, J. C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 40, 1189–1193 (2013).

  67. 67.

    Cattiaux, J. & Cassou, C. Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences. Geophys. Res. Lett. 40, 3682–3687 (2013).

  68. 68.

    Mitchell, D. M. et al. The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex. J. Atmos. Sci. 69, 2608–2618 (2012).

  69. 69.

    Kang, W. & Tziperman, E. More frequent sudden stratospheric warming events due to enhanced MJO forcing expected in a warmer climate. J. Clim. 30, 8727–8743 (2017).

  70. 70.

    Scaife, A. A. et al. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).

  71. 71.

    Eade, R. et al. Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett. 41, 5620–5628 (2014).

  72. 72.

    Dunstone, N. et al. Skillful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci. 9, 809–814 (2016).

  73. 73.

    Orsolini, Y. J. et al. Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010. Clim. Dynam. 47, 1325–1334 (2016).

  74. 74.

    Wang, L., Ting, M. & Kushner, P. J. A robust empirical seasonal prediction of winter NAO and surface climate. Sci. Rep. 7, 279 (2017).

  75. 75.

    Weisheimer, A., Schaller, N., O’Reilly, C., MacLeod, D. A. & Palmer, T. Atmospheric seasonal forecasts of the twentieth century: multi-decadal variability in predictive skill of the winter North Atlantic Oscillation and their potential value for extreme event attribution. Q. J. R. Meteorol. Soc. 143, 917–926 (2016).

  76. 76.

    Riddle, E. E., Butler, A. H., Furtado, J. C., Cohen, J. L. & Kumar, A. CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Clim. Dynam. 41, 1099–1116 (2013).

  77. 77.

    Limpasuvan, V., Thompson, D. W. J. & Hartmann, D. L. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Clim. 17, 2584–2596 (2004).

  78. 78.

    Kolstad, E. W. & Charlton-Perez, A. J. Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim. Dynam. 37, 1443 (2011).

  79. 79.

    Watt-Meyer, O. & Kushner, P. J. Why are temperature and upward wave activity flux positively skewed in the polar stratosphere? J. Clim. 31, 115–130 (2018).

  80. 80.

    Cohen, J. L. & Fletcher, C. G. Improved skill of Northern Hemisphere winter surface temperature predictions based on land-atmosphere fall anomalies. J. Clim. 20, 4118–4132 (2007).

  81. 81.

    Lee, Y. Y. & Black, R. X. Boreal winter low frequency variability in CMIP5 models. J. Geophys. Res. Atmos 118, 6891–6904 (2013).

  82. 82.

    Newman, P. A., Nash, E. R. & Rosenfield, J. E. What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res. 106, 19 999–20 010 (2001).

  83. 83.

    Polvani, L. M. & Waugh, D. W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Clim. 17, 3548–3554 (2004).

  84. 84.

    Charlton-Perez, A. et al. On the lack of stratospheric dynamical variability in low-top version of the CMIP5 models. J. Geophys. Res. Atmos. 118, 2494–2505 (2013).

  85. 85.

    Lehtonen, I. & Karpechko, A. Y. Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. J. Geophys. Res. Atmos. 121, 1591–1610 (2016).

  86. 86.

    Song, Y. & Robinson, W. A. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci. 61, 1711–1725 (2004).

  87. 87.

    Shaw, T. A., Perlwitz, J. & Harnik, N. Downward wave coupling between the stratosphere and troposphere: the importance of meridional wave guiding and comparison with zonal-mean coupling. J. Clim. 23, 6365–6381 (2010).

  88. 88.

    Thompson, D. W. J., Furtado, J. C. & Shepherd, T. G. On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci. 63, 2616–2629 (2006).

  89. 89.

    Roff, G., Thompson, D. W. J. & Hendon, H. Does increasing model stratospheric resolution improve extended range forecast skill? Geophys. Res. Lett. 38, L05809 (2011).

  90. 90.

    Richter, J. H., Solomon, A. & Bacmeister, J. T. Effects of vertical resolution and non-orographic gravity wave drag on the simulated climate in the community atmosphere model, version 5. J. Adv. Model. Earth Syst. 6, 357–383 (2014).

  91. 91.

    Karpechko, A. Y., Hitchcock, P., Peters, D. H. & Schneidereit, A. Predictability of downward propagation of major sudden stratospheric warmings. Q. J. R. Meteorol. Soc. 143, 1459–1470 (2017).

  92. 92.

    Mote, T. L. On the role of snow cover in depressing air temperature. J. Appl. Meteorol. Climatol. 47, 2008–2022 (2008).

  93. 93.

    Vavrus, S. The role of terrestrial snow cover in the climate system. Clim. Dynam. 29, 73–88 (2007).

  94. 94.

    Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001).

  95. 95.

    Baldwin, M. P. et al. Stratospheric memory and skill of extended-range weather forecasts. Science 301, 636–640 (2003).

  96. 96.

    Sun, L., Deser, C. & Tomas, R. A. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Clim. 28, 7824–7845 (2015).

  97. 97.

    Screen, J. A. Simulated atmospheric response to regional and pan-Arctic sea ice loss. J. Clim. 30, 3945–3962 (2017).

  98. 98.

    Furtado, J. C., Cohen, J. L. & Tziperman, E. The combined influences of autumnal snow and sea ice on Northern Hemisphere winters. Geophys. Res. Lett. 43, 3478–3485 (2016).

  99. 99.

    Mori, M., Wanatabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

  100. 100.

    Cohen, J. & Jones J. A new index for more accurate winter predictions. Geophys. Res. Lett. 38, L21701 (2011).

  101. 101.

    Haustein, K. et al. Frame: a real-time global warming index. Sci. Rep. 7, 15417 (2017).

  102. 102.

    Robinson, D. A. et al. NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE): Monthly Eurasian Snow Cover Version 1 (NOAA National Centers for Environmental Information, accessed 10 May 2018).

  103. 103.

    Monthly Mean AO Index (NOAA Climate Prediction Center, accessed xx month year);

Download references


This work was partially supported by the Natural Science and Engineering Research Council of Canada under CanSISE and by the National Science Foundation under grant no. NSF PHY-1748958. Y.P. is supported by the National Science Foundation under grant no. NSF AGS-1624038. G.R.H. is supported by SERDP and ESTCP under grant no. RC18-Z1-1658. The authors also thank E. A. Barnes and J. A. Screen for encouraging us to use their Can it? /Has it? /Will it? analysis framework.

Author information

G.R.H. outlined the study scope, which was then further developed by all authors. Y.P. led the Can it? section and produced Figs. 24, Supplementary Fig. 2 and Box 2. J.C.F. and G.R.H. led the Has it? section, and developed Fig. 1. J.C.F. performed the analysis for Supp. Figure 1. P.J.K. helped frame the paper, and led the Box 1 discussion along with J.C.F. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Gina R. Henderson.

Supplementary information

  1. Supplementary Information

    Supplementary figures 1-2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Schematic representing the sequence of processes by which snow cover can influence the atmosphere and subsequent atmospheric circulation.
Fig. 2: Non-stationarity of the response to fall Siberian snow anomalies in sensitivity studies.
Fig. 3: Future changes in mean and variance of October snow-cover extent projected by 22 CMIP5 models.
Fig. 4: Causality between the atmosphere and snow-cover anomalies over Siberia.