Detection of continental-scale intensification of hourly rainfall extremes


Temperature scaling studies suggest that hourly rainfall magnitudes might increase beyond thermodynamic expectations with global warming1,2,3; that is, above the Clausius–Clapeyron (CC) rate of ~6.5% °C−1. However, there is limited evidence of such increases in long-term observations. Here, we calculate continental-average changes in the magnitude and frequency of extreme hourly and daily rainfall observations from Australia over the years 1990–2013 and 1966–1989. Observed changes are compared with the uncertainty from natural variability and expected changes from CC scaling as a result of global mean surface temperature change. We show that increases in daily rainfall extremes are consistent with CC scaling, but are within the range of natural variability. In contrast, changes in the magnitude of hourly rainfall extremes are close to or exceed double the expected CC scaling, and are above the range of natural variability, exceeding CC × 3 in the tropical region (north of 23° S). These continental-scale changes in extreme rainfall are not explained by changes in the El Niño–Southern Oscillation or changes in the seasonality of extremes. Our results indicate that CC scaling on temperature provides a severe underestimate of observed changes in hourly rainfall extremes in Australia, with implications for assessing the impacts of extreme rainfall.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Changes in the magnitude of daily and hourly rainfall for different definitions of extreme rainfall.
Fig. 2: Changes in the magnitude of extreme daily and hourly rainfall.
Fig. 3: Changes in the magnitude of northern and southern Australian daily and hourly rainfall for different definitions of extreme rainfall.
Fig. 4: Effect of the phase of ENSO on the occurrence of extremes.


  1. 1.

    Lenderink, G., Mok, H. Y., Lee, T. C. & Van Oldenborgh, G. J. Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).

    Article  Google Scholar 

  2. 2.

    Lenderink, G. & Van Meijgaard, E. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett. 5, 025208 (2010).

    Article  Google Scholar 

  3. 3.

    Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).

    Article  CAS  Google Scholar 

  4. 4.

    Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    Article  CAS  Google Scholar 

  5. 5.

    Pfahl, S., Ogorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article  Google Scholar 

  6. 6.

    Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. Atmos. 118, 2098–2118 (2013).

    Article  Google Scholar 

  7. 7.

    Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  8. 8.

    Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article  CAS  Google Scholar 

  9. 9.

    Westra, S. & Sisson, S. A. Detection of non-stationarity in precipitation extremes using a max-stable process model. J. Hydrol. 406, 119–128 (2011).

    Article  Google Scholar 

  10. 10.

    Barbero, R., Fowler, H. J., Lenderink, G. & Blenkinsop, S. Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys. Res. Lett. 44, 974–983 (2017).

    Article  Google Scholar 

  11. 11.

    Lenderink, G. & Fowler, H. J. Hydroclimate: understanding rainfall extremes. Nat. Clim. Change 7, 391–393 (2017).

    Article  Google Scholar 

  12. 12.

    Zhang, X., Zwiers, F. W., Li, G., Wan, H. & Cannon, A. J. Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci. 10, 255–259 (2017).

    Article  CAS  Google Scholar 

  13. 13.

    Lenderink, G., Barbero, R., Loriaux, J. M. & Fowler, H. J. Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Clim. 30, 6037–6052 (2017).

    Article  Google Scholar 

  14. 14.

    Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  15. 15.

    Utsumi, N., Seto, S., Kanae, S., Maeda, E. E. & Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 38, L16708 (2011).

    Article  Google Scholar 

  16. 16.

    Hardwick Jones, R., Westra, S. & Sharma, A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 37, L22805 (2010).

    Article  Google Scholar 

  17. 17.

    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

    Article  Google Scholar 

  18. 18.

    Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

    Article  Google Scholar 

  19. 19.

    Loriaux, J. M., Lenderink, G. & Siebesma, A. P. Large-scale controls on extreme precipitation. J. Clim. 30, 955–968 (2017).

    Article  Google Scholar 

  20. 20.

    Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Change 7, 128–132 (2017).

    Article  Google Scholar 

  21. 21.

    Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2016).

    Article  CAS  Google Scholar 

  22. 22.

    Lochbihler, K., Lenderink, G. & Siebesma, A. P. The spatial extent of rainfall events and its relation to precipitation scaling. Geophys. Res. Lett. 44, 8629–8636 (2017).

    Article  Google Scholar 

  23. 23.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  24. 24.

    Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change 6, 986–991 (2016).

    Article  Google Scholar 

  25. 25.

    Blenkinsop, S., Chan, S. C., Kendon, E. J., Roberts, N. M. & Fowler, H. J. Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Lett. 10, 054021 (2015).

    Article  Google Scholar 

  26. 26.

    Zheng, F., Westra, S. & Leonard, M. Opposing local precipitation extremes. Nat. Clim. Change 5, 389–390 (2015).

    Article  Google Scholar 

  27. 27.

    Barbero, R., Westra, S., Lenderink, G. & Fowler, H. J. Temperature–extreme precipitation scaling: a two-way causality? Int. J. Climatol. 38, e1274–e1279 (2018).

    Article  Google Scholar 

  28. 28.

    Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. & Hendon, H. H. On the remote drivers of rainfall variability in Australia. Mon. Weather Rev. 137, 3233–3253 (2009).

    Article  Google Scholar 

  29. 29.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Article  Google Scholar 

  30. 30.

    Pendergrass, A. G. What precipitation is extreme? Science 360, 1072–1073 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    Wasko, C. & Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci. 8, 527–529 (2015).

    Article  CAS  Google Scholar 

  32. 32.

    Wasko, C., Sharma, A. & Westra, S. Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett. 43, 4026–4032 (2016).

    Article  Google Scholar 

  33. 33.

    Schär, C. et al. Percentile indices for assessing changes in heavy precipitation events. Clim. Change 137, 201–216 (2016).

    Article  Google Scholar 

  34. 34.

    GISTEMP Team ISS Surface Temperature Analysis (GISTEMP) (NASA Goddard Institute for Space Studies, 2017);

  35. 35.

    Hanson, S. et al. A global ranking of port cities with high exposure to climate extremes. Clim. Change 104, 89–111 (2011).

    Article  Google Scholar 

  36. 36.

    Equatorial Pacific Sea Surface Temperatures (NOAA, 2017);

Download references


This work was supported by the INTENSE project. INTENSE is supported by the European Research Council (grant ERC-2013-CoG-617329). H.F. is funded by the Wolfson Foundation and Royal Society as a Royal Society Wolfson Research Merit Award holder (grant WM140025). S.W. is supported by Australian Research Council Discovery project DP150100411.

Author information




S.B.G. carried out the analysis. S.B.G., H.J.F. and R.B. contributed to the design of the methodology. All authors discussed the results and contributed to writing the paper.

Corresponding author

Correspondence to Selma B. Guerreiro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15, Supplementary Tables 1 & 2, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guerreiro, S.B., Fowler, H.J., Barbero, R. et al. Detection of continental-scale intensification of hourly rainfall extremes. Nature Clim Change 8, 803–807 (2018).

Download citation

Further reading