Risk of increased food insecurity under stringent global climate change mitigation policy

Abstract

Food insecurity can be directly exacerbated by climate change due to crop-production-related impacts of warmer and drier conditions that are expected in important agricultural regions1,2,3. However, efforts to mitigate climate change through comprehensive, economy-wide GHG emissions reductions may also negatively affect food security, due to indirect impacts on prices and supplies of key agricultural commodities4,5,6. Here we conduct a multiple model assessment on the combined effects of climate change and climate mitigation efforts on agricultural commodity prices, dietary energy availability and the population at risk of hunger. A robust finding is that by 2050, stringent climate mitigation policy, if implemented evenly across all sectors and regions, would have a greater negative impact on global hunger and food consumption than the direct impacts of climate change. The negative impacts would be most prevalent in vulnerable, low-income regions such as sub-Saharan Africa and South Asia, where food security problems are already acute.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Effects of climate change and emissions mitigation efforts on food security.
Fig. 2: Effects of land-based mitigation on food security indicators by 2050 under ambitious climate mitigation scenarios (RCP2.6) with residual climate change impacts for three SSPs.
Fig. 3: Regional effects of climate change and emissions mitigation.

References

  1. 1.

    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    Article  Google Scholar 

  2. 2.

    Nelson, G. C. et al. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Rosenzweig, C.., & Parry, M. L.. Potential impact of climate change on world food supply. Nature 367, 133–138 (1994).

    Article  Google Scholar 

  4. 4.

    Havlik, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Hasegawa, T. et al. Consequence of climate mitigation on the risk of hunger. Environ. Sci. Technol. 49, 7245–7253 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    van Meijl, H. et al. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. 13, 064021 (2018).

    Article  Google Scholar 

  7. 7.

    Decision 1/CP.21: Adoption of the Paris Agreement FCCC/CP/2015/10/Add.1 (UNFCCC, 2016); https://unfccc.int/resource/docs/2015/cop21/eng/10a01.pdf

  8. 8.

    Renewables 2007 Global Status Report (REN21 & Worldwatch Institute, 2008).

  9. 9.

    Zekarias, H., Thomas, H. & Alla, G. Climate change mitigation policies and poverty in developing countries. Environ. Res. Lett. 8, 035009 (2013).

    Article  Google Scholar 

  10. 10.

    Hertel, T. W. & Rosch, S. D. Climate change, agriculture, and poverty. Appl. Econ. Perspect. Policy 32, 355–385 (2010).

    Article  Google Scholar 

  11. 11.

    Lotze-Campen, H. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ. 45, 103–116 (2014).

    Article  Google Scholar 

  12. 12.

    von Lampe, M. et al. Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agric. Econ. 45, 3–20 (2014).

    Article  Google Scholar 

  13. 13.

    Baldos, U. L. C. & Hertel, T. W. Global food security in 2050: the role of agricultural productivity and climate change. Aust. J. Agric. Resour. Econ. 58, 554–570 (2014).

    Article  Google Scholar 

  14. 14.

    Hasegawa, T. et al. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework. Environ. Sci. Technol. 48, 438–445 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  16. 16.

    Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495–509 (2014).

    Article  Google Scholar 

  17. 17.

    Frank, S. et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 12, 105004 (2017).

    Article  Google Scholar 

  18. 18.

    Food Security Indicators (FAO, 2016); https://go.nature.com/2NUkSXG

  19. 19.

    Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2017).

    Article  Google Scholar 

  20. 20.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    O’Neill, B. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    Article  Google Scholar 

  22. 22.

    van Vuuren, D. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Climatic Change 109, 95–116 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Masui, T. et al. An emission pathway for stabilization at 6 W m−2 radiative forcing. Climatic Change 109, 59–76 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  25. 25.

    Shared Socioeconomic Pathways (SSP) Database v.0.9.3 (IIASA, 2012).

  26. 26.

    Fujimori S. et al. in Post-2020 Climate Action: Global and Asian Perspectives (eds Fujimori, S. & Masui, T.) 11–29 (Springer, Singapore, 2017).

  27. 27.

    Fujimori, S. et al. Will international emissions trading help achieve the objectives of the Paris Agreement? Environ. Res. Lett. 11, 104001 (2016).

    Article  Google Scholar 

  28. 28.

    Mosnier, A. et al. Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth. Energy Policy 57, 602–614 (2013).

    Article  Google Scholar 

  29. 29.

    Frank, S. et al. How effective are the sustainability criteria accompanying the European Union 2020 biofuel targets? GCB Bioenergy 5, 306–314 (2013).

    Article  Google Scholar 

  30. 30.

    Zhang, Y. W. & McCarl, B. A. US agriculture under climate change: An examination of climate change effects on ease of achieving RFS2. Econ. Res. Int. 2013, 763818 (2013).

    Article  Google Scholar 

  31. 31.

    Banse, M., van Meijl, H., Tabeau, A. & Woltjer, G. Will EU biofuel policies affect global agricultural markets? Eur. Rev. Agric. Econ. 35, 117–141 (2008).

    Article  Google Scholar 

  32. 32.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  33. 33.

    Williams, J. R. in Computer Models of Watershed Hydrology (ed. Singh, V. P.) 909–1000 (Water Resources Publications, Highlands Ranch, CO, 1995).

  34. 34.

    Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article  Google Scholar 

  35. 35.

    Müller, C. & Robertson, R. Projecting future crop productivity for global economic modeling. Agric. Econ. 45, 37–50 (2014).

    Article  Google Scholar 

  36. 36.

    Elliott, J. et al. The parallel system for integrating impact models and sectors (pSIMS). Environ. Model. Softw. 62, 509–516 (2014).

    Article  Google Scholar 

  37. 37.

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).

    Article  Google Scholar 

  38. 38.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    You L. et al. Spatial Production Allocation Model (SPAM) 2000 v.3 Release 2 (MapSPAM, 2010).

  40. 40.

    Reisinger, A. et al. Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change 117, 677–690 (2013).

    Article  Google Scholar 

  41. 41.

    Gernaat, D. E. H. J. et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33, 142–153 (2015).

    Article  Google Scholar 

  42. 42.

    Wollenberg, E. et al. Reducing emissions from agriculture to meet the 2 °C target. Glob. Change Biol. 22, 3859–3864 (2016).

    Article  Google Scholar 

  43. 43.

    Calvin, K. et al. 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Econ. 31, S107–S120 (2009).

    Article  Google Scholar 

  44. 44.

    Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Robinson, S. et al. Comparing supply-side specifications in models of global agriculture and the food system. Agric. Econ. 45, 21–35 (2014).

    Article  Google Scholar 

  46. 46.

    Cafiero, C. Advances in Hunger Measurement: Traditional FAO Methods and Recent Innovations (FAO, 2014).

  47. 47.

    Hasegawa, T., Fujimori, S., Takahashi, K. & Masui, T. Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways. Environ. Res. Lett. 10, 014010 (2015).

    Article  Google Scholar 

  48. 48.

    FAO, IFAD, UNICEF, WFP & WHO The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security (FAO, 2017)

  49. 49.

    Energy and Protein Requirements (FAO & WHO, 1973).

Download references

Acknowledgements

T.H., S.F., K.T. and J.T. acknowledge support from the Environment Research and Technology Development Fund 2-1702 of the Environmental Restoration and Conservation Agency of Japan and the JSPS Overseas Research Fellowships. P.H., H.V. A.T. and H.v.M. acknowledge support from the European Union’s Horizon 2020 research and innovation programme (EU H2020) under grant agreement no. 633692 (SUSFANS project). B.L.B. acknowledges support from the EU H2020 under grant agreement no. 689150 (SIM4NEXUS project). K.W., T.B.S. and D.M.D. acknowledge support from the CGIAR Research Programs on Policies, Institutions, and Markets (PIM) and on Climate Change, Agriculture and Food Security (CCAFS). This study has been partly funded by the Joint Research Centre of the European Commission (AGCLIM50 Project).

Author information

Affiliations

Authors

Contributions

T.H. coordinated the conception and writing of the paper, performed the scenario analysis and created the figures. T.H., S.F. and Y.O. created the hunger estimation tool for the multiple models. T.H., S.F, P.H. and H.V. designed the research, led the writing of the paper and designed the scenario settings, which were developed and contributed by H.L.C., I.P.D. and H.v.M., with notable contributions from T.H., S.F., K.T., J.T. (AIM/CGE), P.H., H.V. (GLOBIOM), T.F., I.P.D., P.W. (CAPRI), P.K. (GCAM), J.C.D., E.S., W.J.v.Z. (IMAGE), D.M.D, T.B.S, K.W. (IMPACT), J.K., A.T., H.v.M. (MAGNET), B.L.B. and H.L.C. (MAgPIE). All authors provided feedback and contributed to writing the paper.

Corresponding author

Correspondence to Tomoko Hasegawa.

Ethics declarations

Competing interests

The authors declare no competing interests. The views expressed are solely those of the authors and do not represent an official position of the employers or funders involved in the study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–10, Supplementary Figures 1–17 and Supplementary Tables 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, T., Fujimori, S., Havlík, P. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Clim Change 8, 699–703 (2018). https://doi.org/10.1038/s41558-018-0230-x

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing