Abstract

The interaction of gradual climate trends and extreme weather events since the turn of the century has triggered complex and, in some cases, catastrophic ecological responses around the world. We illustrate this using Australian examples within a press–pulse framework. Despite the Australian biota being adapted to high natural climate variability, recent combinations of climatic presses and pulses have led to population collapses, loss of relictual communities and shifts into novel ecosystems. These changes have been sudden and unpredictable, and may represent permanent transitions to new ecosystem states without adaptive management interventions. The press–pulse framework helps illuminate biological responses to climate change, grounds debate about suitable management interventions and highlights possible consequences of (non-) intervention.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 11 July 2018

    In the version of this Perspective originally published, affiliations 1 and 4 ware incorrect, and should have read: “1Antarctic Climate & Ecosystems CRC, University of Tasmania, Hobart, Tasmania, Australia” and “4Centre for Water, Climate and Land (CWCL), University of Newcastle, Callaghan, NSW, Australia”. These have been corrected in the online versions of this Perspective.

References

  1. 1.

    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

  2. 2.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

  3. 3.

    Wu, J. Detecting and attributing the effects of climate change on the distributions of snake species over the past 50 years. Environ. Manag. 57, 207–219 (2016).

  4. 4.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

  5. 5.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

  6. 6.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

  7. 7.

    Sanz-Lazaro, C. Climate extremes can drive biological assemblages to early successional stages compared to several mild disturbances. Sci. Rep. 6, 30607 (2016).

  8. 8.

    Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

  9. 9.

    Nielsen, U. N. et al. The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere 3, 17 (2012).

  10. 10.

    Zhang, Q. et al. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications. Sci. Rep. 6, 22344 (2016).

  11. 11.

    Ryan, M. J. et al. Too wet for frogs: changes in a tropical leaf litter community coincide with La Nina. Ecosphere 6, 4 (2015).

  12. 12.

    Thibault, K. M. & Brown, J. H. Impact of an extreme climatic event on community assembly. Proc. Natl Acad. Sci. USA 105, 3410–3415 (2008).

  13. 13.

    Guerrero-Meseguer, L., Marin, A. & Sanz-Lazaro, C. Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings. Environ. Pollut. 230, 40–45 (2017).

  14. 14.

    Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (IPCC, Cambridge Univ. Press, 2012).

  15. 15.

    Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. & Beierkuhnlein, C. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob. Change Biol. 15, 837–849 (2009).

  16. 16.

    Niu, S. L. et al. Plant growth and mortality under climatic extremes: An overview. Environ. Exp. Bot. 98, 13–19 (2014).

  17. 17.

    Tomillo, P. S., Genovart, M., Paladino, F. V., Spotila, J. R. & Oro, D. Climate change overruns resilience conferred by temperature-dependent sex determination in sea turtles and threatens their survival. Glob. Change Biol. 21, 2980–2988 (2015).

  18. 18.

    Griffith, S. C., Mainwaring, M. C., Sorato, E. & Beckmann, C. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird. R. Soc. Open Sci. 3, 150371 (2016).

  19. 19.

    Humphreys, M. W. et al. A changing climate for grassland research. New Phytol. 169, 9–26 (2006).

  20. 20.

    Johansson, J., Bolmgren, K. & Jonzén, N. Climate change and the optimal flowering time of annual plants in seasonal environments. Glob. Change Biol. 19, 197–207 (2013).

  21. 21.

    Stott, P. How climate change affects extreme weather events. Research can increasingly determine the contribution of climate change to extreme events such as droughts. Science 352, 1517–1518 (2016).

  22. 22.

    Parmesan, C. et al. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16, 58–71 (2013).

  23. 23.

    Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology—theory and Practice. Ecology 65, 1–13 (1984).

  24. 24.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

  25. 25.

    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280, 20122829 (2013).

  26. 26.

    Boucek, R. E. & Rehage, J. S. Climate extremes drive changes in functional community structure. Glob. Change Biol. 20, 1821–1831 (2014).

  27. 27.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

  28. 28.

    Enright, N. J., Fontaine, J. B., Bowman, D., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).

  29. 29.

    Laurance, W. F. et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Conserv. 144, 1472–1480 (2011).

  30. 30.

    Nicholls, N., Drosdowsky, W. & Lavery, B. Australian rainfall variability and change. Weather Forecast 52, 66–67 (1997).

  31. 31.

    Peel, M. C., McMahon, T. A. & Finlayson, B. L. Continental differences in the variability of annual runoff-update and reassessment. J. Hydrol. 295, 185–197 (2004).

  32. 32.

    Stern, H., de Hoedt, G. & Ernst, J. Objective classification of Australian climates. Aust. Meteorol. Mag. 49, 87–96 (2000).

  33. 33.

    Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. & Hendon, H. H. On the remote drivers of rainfall variability in Australia. Mon. Weather Rev. 137, 3233–3253 (2009).

  34. 34.

    Marshall, A. G. et al. Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim. Dynam. 43, 1915–1937 (2014).

  35. 35.

    Ummenhofer, C. C. et al. What causes southeast Australia’s worst droughts? Geophys. Res. Lett. 36, L04706 (2009).

  36. 36.

    Taschetto, A. S., Sen Gupta, A., Ummenhofer, C. C. & England, M. H. Can Australian multiyear droughts and wet spells be generated in the absence of oceanic variability? J. Clim. 29, 6201–6221 (2016).

  37. 37.

    Mariani, M. & Fletcher, M. S. The Southern Annular Mode determines interannual and centennial-scale fire activity in temperate southwest Tasmania, Australia. Geophys. Res. Lett. 43, 1702–1709 (2016).

  38. 38.

    Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dynam. 15, 319–324 (1999).

  39. 39.

    Williamson, G. J. et al. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environ. Res. Lett. 11, 035003 (2016).

  40. 40.

    Climate Change in Australia: Information for Australia’s Natural Resource Management Regions (CSIRO and Bureau of Meteorology, 2015).

  41. 41.

    Jakob, D. & Walland, D. Variability and long-term change in Australian temperature and precipitation extremes. Weather Clim. Extrem. 14, 36–55 (2016).

  42. 42.

    Braganza, K. et al. U pdate on the State of the Climate, Long-term Trends and Associated Causes Technical Report No. 36 (CAWCR, 2011).

  43. 43.

    Pearce, A. et al. The “Marine Heat Wave” off Western Australia During the Summer of 2010/11 Report No. 222 (Department of Fisheries, 2011).

  44. 44.

    Hope, P. K., Drosdowsky, W. & Nicholls, N. Shifts in the synoptic systems influencing southwest Western Australia. Clim. Dynam. 26, 751–764 (2006).

  45. 45.

    White, N. J. et al. Australian sea levels-trends, regional variability and influencing factors. Earth Sci. Rev. 136, 155–174 (2014).

  46. 46.

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) (Cambridge Univ. Press, 2012).

  47. 47.

    Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

  48. 48.

    Alexander, L. V. & Arblaster, J. M. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol. 29, 417–435 (2009).

  49. 49.

    Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, D05109 (2006).

  50. 50.

    Lewis, S. C. & King, A. D. Dramatically increased rate of observed hot record breaking in recent Australian temperatures. Geophys. Res. Lett. 42, 7776–7784 (2015).

  51. 51.

    Clarke, H., Lucas, C. & Smith, P. Changes in Australian fire weather between 1973 and 2010. Int. J. Climatol. 33, 931–944 (2013).

  52. 52.

    King, A. D., Karoly, D. J. & Henley, B. J. Australian climate extremes at 1.5 °C and 2 °C of global warming. Nat. Clim. Change 7, 412–416 (2017).

  53. 53.

    Lewis, S. C. & Karoly, D. J. Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys. Res. Lett. 40, 3705–3709 (2013).

  54. 54.

    Perkins, S. E. & Gibson, P. B. Increased risk of the 2014 Australian May heatwave due to anthropogenic activity. Bull. Am. Meteorol. Soc. 96, S154–S157 (2015).

  55. 55.

    King, A. D. et al. Extreme rainfall variability in Australia: patterns, drivers, and predictability. J. Clim. 27, 6035–6050 (2014).

  56. 56.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).

  57. 57.

    Vance, T. R., van Ommen, T. D., Curran, M. A. J., Plummer, C. T. & Moy, A. D. A millennial proxy record of ENSO and Eastern Australian rainfall from the Law Dome Ice Core, East Antarctica. J. Clim. 26, 710–725 (2013).

  58. 58.

    Gallant, A. J. E. & Gergis, J. An experimental streamflow reconstruction for the River Murray, Australia, 1783–1988. Water Resour. Res. 47, W00G04 (2011).

  59. 59.

    Reeves, J. M. et al. Palaeoenvironmental change in tropical Australasia over the last 30,000 years—a synthesis by the OZ-INTIMATE group. Quat. Sci. Rev. 74, 97–114 (2013).

  60. 60.

    Gaffney, O. & Steffen, W. The Anthropocene equation. Anthr. Rev. 4, 53–61 (2017).

  61. 61.

    IPCC C limate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  62. 62.

    Widlansky, M. J., Timmermann, A. & Cai, W. Future extreme sea level seesaws in the tropical Pacific. Sci. Adv. 1, e1500560 (2015).

  63. 63.

    Lukas, R., Hayes, S. P. & Wyrtki, K. Equatorial sea-level response during the 1982–1983 El-Nino. J. Geophys. Res. Oceans 89, 425–430 (1984).

  64. 64.

    Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).

  65. 65.

    Cowan, T. et al. More frequent, longer, and hotter heat waves for Australia in the twenty-first century. J. Clim. 27, 5851–5871 (2014).

  66. 66.

    Alexander, L. V. & Arblaster, J. M. Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather Clim. Extrem. 15, 34–56 (2017).

  67. 67.

    Pitman, A. J., Narisma, G. T. & McAneney, J. The impact of climate change on the risk of forest and grassland fires in Australia. Climatic Change 84, 383–401 (2007).

  68. 68.

    Clarke, H. G., Smith, P. L. & Pitman, A. J. Regional signatures of future fire weather over eastern Australia from global climate models. Int. J. Wildland Fire 20, 550–562 (2011).

  69. 69.

    Fox-Hughes, P., Harris, R. M., Lee, G., Grose, M. & Bindoff, N. L. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 23, 309–321 (2014).

  70. 70.

    Dowdy, A. J. & Mills, G. A. Atmospheric and fuel moisture characteristics associated with lightning-attributed fires. J. Appl. Meteorol. Climatol. 51, 2025–2037 (2012).

  71. 71.

    Power, S. B., Delage, F. P. D., Chung, C. T. Y., Ye, H. & Murphy, B. F. Humans have already increased the risk of major disruptions to Pacific rainfall. Nat. Commun. 8, 14368 (2017).

  72. 72.

    McGregor, S., Timmermann, A., England, M. H., Timm, O. E. & Wittenberg, A. T. Inferred changes in El Nino-Southern Oscillation variance over the past six centuries. Clim. Past. 9, 2269–2284 (2013).

  73. 73.

    Ummenhofer, C. C. et al. How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Nina event? Geophys. Res. Lett. 42, 9942–9951 (2015).

  74. 74.

    Cai, W. J. et al. Increased frequency of extreme La Nina events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

  75. 75.

    Chung, C. T. Y., Power, S. B., Arblaster, J. M., Rashid, H. A. & Roff, G. L. Nonlinear precipitation response to El Nino and global warming in the Indo-Pacific. Clim. Dynam. 42, 1837–1856 (2014).

  76. 76.

    Cerrano, C. & Bavestrello, G. Medium-term effects of die-off of rocky benthos in the Ligurian Sea. What can we learn from gorgonians? Chem. Ecol. 24, 73–82 (2008).

  77. 77.

    Asner, G. P. et al. Progressive forest canopy water loss during the 2012-2015 California drought. Proc. Natl Acad. Sci. USA 113, E249–E255 (2016).

  78. 78.

    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).

  79. 79.

    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).

  80. 80.

    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

  81. 81.

    Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D. & Bowman, D. M. Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. For. Ecol. Manag. 342, 39–48 (2015).

  82. 82.

    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. USA 114, 4881–4886 (2017).

  83. 83.

    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Phil. Trans. R. Soc. B 372, 20160135 (2017).

  84. 84.

    Nicotra, A. B., Beever, E. A., Robertson, A. L., Hofmann, G. E. & O’Leary, J. Assessing the components of adaptive capacity to improve conservation and management efforts under global change. Conserv. Biol. 29, 1268–1278 (2015).

  85. 85.

    Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B 275, 419–425 (2008).

  86. 86.

    Lindenmayer, D. B. in Biodiversity: Integrating Conservation and Production: Case Studies from Australian Farms, Forests and Fisheries (eds Lefroy, T. et al.) 21–29 (CSIRO, Clayton, 2008).

  87. 87.

    Altwegg, R., Visser, V., Bailey, L. D. & Erni, B. Learning from single extreme events. Phil. Trans. R. Soc. B 372, 20160141 (2017).

  88. 88.

    Bailey, L. D. & van de Pol, M. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96 (2016).

  89. 89.

    Pullin, A. S. & Knight, T. M. Doing more good than harm—building an evidence-base for conservation and environmental management. Biol. Conserv. 142, 931–934 (2009).

  90. 90.

    Weeks, A. R., Stoklosa, J. & Hoffmann, A. A. Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Front. Zool. 13, 31 (2016).

  91. 91.

    GISTEMP Team GISS Surface Temperature Analysis (GISTEMP) (NASA Goddard Institute for Space Studies, accessed 7 September 2016); https://data.giss.nasa.gov/gistemp

  92. 92.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

  93. 93.

    Jones, D. A., Wang, W. & Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 58, 233–248 (2009).

Download references

Acknowledgements

This paper is the result of a workshop on climate variability and biodiversity (past, present, future), funded by The National Climate Change Adaptation Research Facility (NCCARF) and organized by N. Roslyn. D. Rosauer participated in the workshop. K. Henle (Helmholtz Centre for Environmental Research–UFZ) gave helpful advice about management options.

Author information

Author notes

  1. Unaffiliated: phenologist@gmail.com.

Affiliations

  1. Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia

    • R. M. B. Harris
    • , T. R. Vance
    • , C. R. Tozer
    •  & T. A. Remenyi
  2. Department of Conservation Biology, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany

    • R. M. B. Harris
  3. Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia

    • L. J. Beaumont
  4. Centre for Water, Climate and Land (CWCL), University of Newcastle, Callaghan, New South Wales, Australia

    • C. R. Tozer
  5. Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

    • S. E. Perkins-Kirkpatrick
  6. ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia

    • S. E. Perkins-Kirkpatrick
    •  & S. McGregor
  7. CSIRO Agriculture and Food, Hobart, Tasmania, Australia

    • P. J. Mitchell
  8. Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia

    • A. B. Nicotra
  9. School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

    • S. McGregor
  10. Centre of Excellence for Behavioural and Physiological Ecology, University of New England, Armidale, New South Wales, Australia

    • N. R. Andrew
  11. Centre for Ecosystem Science, University of New South Wales, Sydney, New South Wales, Australia

    • M. Letnic
  12. School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia

    • M. R. Kearney
  13. UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia

    • T. Wernberg
  14. Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia

    • L. B. Hutley
  15. School of Geography, The University of Melbourne, Parkville, Victoria, Australia

    • M.-S. Fletcher
  16. School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia

    • M. R. Keatley
  17. Australian Nuclear Science & Technology Organisation, Sydney, New South Wales, Australia

    • C. A. Woodward
  18. School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia

    • C. A. Woodward
  19. School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia

    • G. Williamson
    •  & D. M. J. S. Bowman
  20. TropWATER Centre, James Cook University, Townsville, Queensland, Australia

    • N. C. Duke

Authors

  1. Search for R. M. B. Harris in:

  2. Search for L. J. Beaumont in:

  3. Search for T. R. Vance in:

  4. Search for C. R. Tozer in:

  5. Search for T. A. Remenyi in:

  6. Search for S. E. Perkins-Kirkpatrick in:

  7. Search for P. J. Mitchell in:

  8. Search for A. B. Nicotra in:

  9. Search for S. McGregor in:

  10. Search for N. R. Andrew in:

  11. Search for M. Letnic in:

  12. Search for M. R. Kearney in:

  13. Search for T. Wernberg in:

  14. Search for L. B. Hutley in:

  15. Search for L. E. Chambers in:

  16. Search for M.-S. Fletcher in:

  17. Search for M. R. Keatley in:

  18. Search for C. A. Woodward in:

  19. Search for G. Williamson in:

  20. Search for N. C. Duke in:

  21. Search for D. M. J. S. Bowman in:

Contributions

R.M.B.H. and D.M.J.S.B. conceived the study, with input from all authors. R.M.B.H. led the writing. M. L. suggested the application of the Press-Pulse framework in this context. All authors contributed to the formulation of the paper and contributed to the first manuscript draft and subsequent revisions. T.A.R. created Fig. 1. T.V. created Fig. 2, based on data and analyses contributed by C.T., S.E.P-K, S.M., P.J.M. and T.A.R. L.J.B and R.M.B.H. created Fig. 3 and compiled the Supplementary Material. P.J.M., D.M.J.S.B. and N.D.C. contributed images to Fig. 3. R.M.B.H., L.J.B., N.R.A. and A.B.N. wrote the Introduction and Discussion. T.V. led the writing of the Climate drivers section, with contributions from C.T., S.E.P-K, R.M.B.H., S.M. and P.J.M. D.M.J.S.B. led the writing of the obligate seeder forest collapse and fire in Gondwanan refugia case studies, with analyses contributed by G.W. M.F. contributed to the fire in Gondwanan refugia case study. L.B.H. led the writing of the mangrove dieback case study, with contributions from N.C.D. T.W. and L.E.C. wrote the kelp forest regime shift case study. M.L. and M.K. wrote the arid zone boom and bust case study. P.J.M. and C.W. wrote the riverine forest decline case study.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to R. M. B. Harris.

Supplementary information

  1. Supplementary Information

    Supplementary Notes 1-6, Supplementary Figures S1, S2, S1.3.1, S1.3.2, S1.41, S1.42, S1.51, S1.52, S1.61, S1.62

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0187-9

Further reading