Article | Published:

Forest-rainfall cascades buffer against drought across the Amazon

Nature Climate Changevolume 8pages539543 (2018) | Download Citation

Abstract

Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpired-water subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.

  • Subscribe to Nature Climate Change for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Aragão, L. E. O. C. The rainforest's water pump. Nature 489, 217–218 (2012).

  2. 2.

    Spracklen, D. V., Arnold, S. R. & Taylor, C. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

  3. 3.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation–atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

  4. 4.

    Costa, M. H. & Foley, J. A. Water balance of the Amazon basin: dependence on vegetation cover and canopy conductance. J. Geophys. Res. Atmos. 102, 23973–23989 (1997).

  5. 5.

    Costa, M. H. & Pires, G. F. Effects of Amazon and central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 30, 1970–1979 (2010).

  6. 6.

    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

  7. 7.

    Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

  8. 8.

    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

  9. 9.

    Nobre, C. A., Sellers, P. J. & Shukla, J. Amazonian deforestation and regional climate change. J. Clim. 4, 957–988 (1991).

  10. 10.

    Oyama, M. D. & Nobre, C. A. A new climate–vegetation equilibrium state for tropical South America. Geophys. Res. Lett. 30, 2199 (2003).

  11. 11.

    Sampaio, G. et al. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 34, L17709 (2007).

  12. 12.

    Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2014).

  13. 13.

    Nepstad, D. C. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994).

  14. 14.

    Eltahir, E. A. B. & Bras, R. L. Precipitation recycling in the Amazon basin. Q. J. R. Meteorol. Soc. 120, 861–880 (1994).

  15. 15.

    Zemp, D. C. et al. On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 14, 13337–13359 (2014).

  16. 16.

    Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).

  17. 17.

    Holmgren, M., Hirota, M., van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Change 3, 755–758 (2013).

  18. 18.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

  19. 19.

    Nepstad, D. C., Stickler, C. M., Soares-Filho, B. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 1737–1746 (2008).

  20. 20.

    Van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

  21. 21.

    Van Beek, L. P. H., Wada, Y. & Bierkens, M. F. P. Global monthly water stress: 1. Water balance and water availabilty. Water Resour. Res. 47, W07517 (2011).

  22. 22.

    Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

  23. 23.

    Staal, A., Dekker, S. C., Xu, C. & van Nes, E. H. Bistability, spatial interaction, and the distribution of tropical forests and savannas. Ecosystems 19, 1080–1091 (2016).

  24. 24.

    Xu, C. et al. Remotely sensed canopy height reveals three pantropical ecosystem states. Ecology 97, 2518–2521 (2016).

  25. 25.

    Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).

  26. 26.

    Dirmeyer, P. A. & Brubaker, K. L. Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res. Atmos. 104, 19383–19397 (1999).

  27. 27.

    Dirmeyer, P. A. & Brubaker, K. L. Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeorol. 8, 20–37 (2007).

  28. 28.

    Tuinenburg, O. A., Hutjes, R. W. A. & Kabat, P. The fate of evaporated water from the Ganges basin. J. Geophys. Res. Atmos. 117, D01107 (2012).

  29. 29.

    Bosmans, J. H. C., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Hydrological impacts of global land cover change and human water use. Hydrol. Earth Syst. Sci. 21, 5603–5626 (2017).

  30. 30.

    Von Randow, C. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 78, 5–26 (2004).

  31. 31.

    Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle—part 1: temporal characteristics over land. Earth Syst. Dynam. 5, 441–469 (2014).

  32. 32.

    Miralles, D. G. et al. The WACMOS‒ET project—part 2: evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 20, 823–842 (2016).

  33. 33.

    Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M. & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. Atmos. 115, D16122 (2010).

  34. 34.

    Van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle—part 2: moisture recycling. Earth Syst. Dynam. 5, 471–489 (2014).

  35. 35.

    Zeng, N. et al. Causes and impacts of the 2005 Amazon drought. Environ. Res. Lett. 3, 014002 (2008).

  36. 36.

    Satyamurty, P., da Costa, C. P. W. & Manzi, A. O. Moisture source for the Amazon basin: a study of contrasting years. Theor. Appl. Climatol. 111, 195–209 (2013).

  37. 37.

    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

  38. 38.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

  39. 39.

    Burde, G. I., Gandush, C. & Bayarjargal, Y. Bulk recycling models with incomplete vertical mixing. Part II: precipitation recycling in the Amazon basin. J. Clim. 19, 1473–1489 (2006).

  40. 40.

    Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl Acad. Sci. USA 114, 8481–8486 (2017).

  41. 41.

    Maeda, E. E., Kim, H., Aragão, L. E., Famiglietti, J. S. & Oki, T. Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophys. Res. Lett. 42, 7546–7553 (2015).

  42. 42.

    Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114, 4442–4446 (2017).

  43. 43.

    Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Phil. Trans. R. Soc. Lond. B 363, 1779–1785 (2008).

  44. 44.

    Pires, G. F. & Costa, M. H. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett. 40, 3618–3623 (2013).

  45. 45.

    Lenton, T. M. et al. Tipping elements in the Earth's climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

  46. 46.

    Nobre, C. A. & Borma, L. D. S. ‘Tipping points’ for the Amazon forest. Curr. Opin. Environ. Sustain. 1, 28–36 (2009).

  47. 47.

    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

  48. 48.

    Poorter, L. et al. Biomass resilience of neotropical secondary forests. Nature 530, 211–214 (2016).

  49. 49.

    Zemp, D. C., Schleussner, C. F., Barbosa, H. M. J. & Rammig, A. Deforestation effects on Amazon forest resilience. Geophys. Res. Lett. 44, 6182–6190 (2017).

  50. 50.

    Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

  51. 51.

    Ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

  52. 52.

    Fittkau, E. J. Esboço de uma divisao ecolôgica da regiao amazônica. In Proc. Symp. Biol. Trop. Amaz., Florencia y Leticia, 1969 363–372 (1971).

  53. 53.

    Quesada, C. A. et al. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8, 1415–1440 (2011).

  54. 54.

    Markewitz, D., Devine, S., Davidson, E. A., Brando, P. & Nepstad, D. C. Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytol. 187, 592–607 (2010).

  55. 55.

    Hagemann, S. & Gates, L. D. Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Clim. Dyn. 21, 349–359 (2003).

  56. 56.

    Wada, Y., Wisser, D. & Bierkens, M. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 5, 15–40 (2014).

  57. 57.

    Hagemann S., Botzet M., Dümenil L., Machenhauer B. Derivation of Global GCM Boundary Conditions from 1km Land Use Satellite Data MPI Report No. 289 (Max Planck Institute for Meteorology, 1999).

  58. 58.

    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

  59. 59.

    Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—Irrigation and Drainage Paper 56 (FAO, 1998).

  60. 60.

    Araújo A. C., von Randow C. & Restrepo-Coupe N. in Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin (eds Nagy L., Forsberg B. R. & Artaxo P.) 149–169 (Springer, Berlin, 2016).

  61. 61.

    Dee, D. P. et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

  62. 62.

    Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

  63. 63.

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

  64. 64.

    Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

  65. 65.

    Freitas, S. R. et al. A convective kinematic trajectory technique for low‐resolution atmospheric models. J. Geophys. Res. Atmos. 105, 24375–24386 (2000).

  66. 66.

    Van der Ent, R. J., Tuinenburg, O. A., Knoche, H. R., Kunstmann, H. & Savenije, H. H. G. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sci. 17, 4869–4884 (2013).

  67. 67.

    Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 17, 3707–3720 (2013).

  68. 68.

    Brubaker, K. L., Entekhabi, D. & Eagleson, P. S. Estimation of continental precipitation recycling. J. Clim. 6, 1077–1089 (1993).

  69. 69.

    Bosilovich, M. G. & Chern, J.-D. Simulation of water sources and precipitation recycling for the MacKenzie, Mississippi, and Amazon River basins. J. Hydrometeorol. 7, 312–329 (2006).

  70. 70.

    Costa, M. H. & Foley, J. A. Trends in the hydrologic cycle of the Amazon basin. J. Geophys. Res. Atmos. 104, 14189–14198 (1999).

  71. 71.

    Trenberth, K. E. Atmospheric moisture recycling: role of advection and local evaporation. J. Clim. 12, 1368–1381 (1999).

  72. 72.

    Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past. 6, 77–82 (2010).

  73. 73.

    DiMiceli, C. M. et al. Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250m Spatial Resolution for Data Years Beginning Day 65, 2000–2010, Collection 5 Percent Tree Cover (University of Maryland, 2011).

  74. 74.

    Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. Int. J. Climatol. 25, 693–712 (2005).

  75. 75.

    Markham, C. G. Seasonality of precipitation in the United States. Ann. Assoc. Am. Geogr. 60, 593–597 (1970).

  76. 76.

    Aguiar, A. P. D. et al. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob. Change Biol. 22, 1821–1840 (2016).

  77. 77.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

  78. 78.

    Olson J. S. Global Ecosystem Framework—Definitions (USGS EROS Data Center, 1994).

  79. 79.

    Olson J. S. Global Ecosystem Framework—Translation Strategy (USGS EROS Data Center, 1994).

  80. 80.

    Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high‐resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).

Download references

Acknowledgements

We thank C. Xu and H. ter Steege for providing data files. A.S. thanks S. Bathiany and B. M. Flores for useful discussions. A.S. was supported by a PhD scholarship from SENSE Research School. O.A.T. was supported by the Netherlands Organization for Scientific Research under the Innovational Research Incentives Scheme Veni (grant agreement 016.171.019). E.H.v.N. and M.S. were supported by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 643073 (ITN CRITICS). D.C.Z. was supported by IRTG 1740/TRP 2011/50151-0, funded by the DFG and FAPESP. This work was carried out under the programme of the Netherlands Earth System Science Centre.

Author information

Affiliations

  1. Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands

    • Arie Staal
    • , Egbert H. van Nes
    •  & Marten Scheffer
  2. Department of Environmental Sciences, Copernicus Institute for Sustainable Development, Utrecht University, Utrecht, The Netherlands

    • Obbe A. Tuinenburg
    •  & Stefan C. Dekker
  3. Department of Physical Geography, Utrecht University, Utrecht, The Netherlands

    • Joyce H. C. Bosmans
  4. Resource Ecology Group, Wageningen University, Wageningen, The Netherlands

    • Milena Holmgren
  5. Biodiversity, Macroecology and Biogeography Group, University of Goettingen, Göttingen, Germany

    • Delphine Clara Zemp
  6. Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam, Germany

    • Delphine Clara Zemp
  7. Faculty of Management, Science and Technology, Open University, Heerlen, The Netherlands

    • Stefan C. Dekker

Authors

  1. Search for Arie Staal in:

  2. Search for Obbe A. Tuinenburg in:

  3. Search for Joyce H. C. Bosmans in:

  4. Search for Milena Holmgren in:

  5. Search for Egbert H. van Nes in:

  6. Search for Marten Scheffer in:

  7. Search for Delphine Clara Zemp in:

  8. Search for Stefan C. Dekker in:

Contributions

A.S., O.A.T. and S.C.D. designed the research. A.S., O.A.T. and J.H.C.B. carried out the analyses. All authors interpreted the results. A.S. wrote the paper with contributions from all authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Arie Staal.

Supplementary information

  1. Supplementary Information

    Supplementary table 1, Supplementary figures 1–12, Supplementary references.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0177-y

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.