Perspective | Published:

Climate reddening increases the chance of critical transitions

Climate change research often focuses on trends in the mean and variance. However, analyses of palaeoclimatic and contemporary dynamics reveal that climate memory — as measured for instance by temporal autocorrelation — may also change substantially over time. Here, we show that elevated temporal autocorrelation in climatic variables should be expected to increase the chance of critical transitions in climate-sensitive systems with tipping points. We demonstrate that this prediction is consistent with evidence from forests, coral reefs, poverty traps, violent conflict and ice sheet instability. In each example, the duration of anomalous dry or warm events elevates chances of invoking a critical transition. Understanding the effects of climate variability thus requires research not only on variance, but also on climate memory.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Scheffer, M. Critical Transitions in Nature and Society (Studies in Complexity, Princeton Univ. Press, 2009).

  2. 2.

    Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).

  3. 3.

    May, R. M. Thesholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).

  4. 4.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

  5. 5.

    van de Leemput, I. A., van Nes, E. H. & Scheffer, M. Resilience of alternative states in spatially extended ecosystems. PLoS ONE 10, e0116859 (2015).

  6. 6.

    Carpenter, S. R., Ludwig, D. & Brock, W. A. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appl. 9, 751–771 (1999).

  7. 7.

    Trenberth, K. E. Some effects of finite sample size and persistence on meteorological statistics. part i: autocorrelations. Mon. Weather Rev. 112, 2359–2368 (1984).

  8. 8.

    Hasselmann, K. Stochastic climate models Part I. Theory. Tellus 28, 473–485 (1976).

  9. 9.

    Frankignoul, C. & Hasselmann, K. Stochastic climate models Part II: application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).

  10. 10.

    Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994).

  11. 11.

    Mantua, N. J. et al. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

  12. 12.

    Lenton, T. M., Dakos, V., Bathiany, S. & Scheffer, M. Observed trends in the magnitude and persistence of monthly temperature variability. Sci. Rep. 7, 5940 (2017).

  13. 13.

    Boulton, C. A. & Lenton, T. M. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change. Proc. Natl Acad. Sci.USA 112, 11496–11501 (2015). Shows that the variability of the Pacific Decadal Oscillation has become redder in the period 1900–present and examines how this might affect (nonlinear) marine ecosystems.

  14. 14.

    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).

  15. 15.

    Wagner, T. J. W. & Eisenman, I. False alarms: How early warning signals falsely predict abrupt sea ice loss. Geophys. Res. Lett. 42, 10333–10341 (2015).

  16. 16.

    Bathiany, S. et al. Statistical indicators of Arctic sea-ice stability—prospects and limitations. Cryosphere 10, 1631–1645 (2016).

  17. 17.

    Hänggi, P. & Jung, P. Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239–326 (1995).

  18. 18.

    Hänggi, P., Mroczkowski, T. J., Moss, F. & McClintock, P. V. E. Bistability driven by colored noise: Theory and experiment. Phys. Rev. A 32, 695–698 (1985).

  19. 19.

    Horsthemke, W. & Lefever, R. in Noise-Induced Transitions 164–200 (Springer, Berlin, 1984).

  20. 20.

    Greenman, J. V. & Benton, T. G. The amplification of environmental noise in population models: causes and consequences. Am. Nat. 161, 225–239 (2003).

  21. 21.

    Heino, M., Ripa, J. & Kaitala, V. Extinction risk under coloured environmental noise. Ecography 23, 177–184 (2000). Shows that because the sample variance of environmental noise is dependent on sample length, there cannot be general results on extinction risk in coloured environments.

  22. 22.

    Mustin, K., Dytham, C., Benton, T. G. & Travis, J. M. J. Red noise increases extinction risk during rapid climate change. Divers. Distrib. 19, 815–824 (2013).

  23. 23.

    Ripa, J. & Lundberg, P. Noise colour and the risk of population extinctions. Proc. R. Soc. Lond. B. 263, 1751–1753 (1996).

  24. 24.

    Rudnick, D. L. & Davis, R. E. Red noise and regime shifts. Deep Sea Res. Pt I 50, 691–699 (2003).

  25. 25.

    Schwager, M., Johst, K. & Jeltsch, F. Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions. Am. Nat. 167, 879–888 (2006).

  26. 26.

    Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004).

  27. 27.

    Vasseur, D. A. Populations embedded in trophic communities respond differently to coloured environmental noise. Theor. Popul. Biol. 72, 186–196 (2007).

  28. 28.

    Petchey, O. L. Environmental colour affects aspects of single-species population dynamics. Proc. R. Soc. Lond. A 267, 747–754 (2000).

  29. 29.

    Steele, J. H., Henderson, E. W., Mangel, M. & Clark, C. Coupling between physical and biological scales [and discussion]. Phil. Trans. R. Soc. B 343, 5–9 (1994). Shows that the diversity of patterns observed in populations is dependent on the relative timescales of forcing and response, indicating that the variability of environmental forces influences population dynamics.

  30. 30.

    Steele, J. H. & Henderson, E. W. Modeling long-term fluctuations in fish stocks. Science 224, 985–987 (1984).

  31. 31.

    Ludwig, D., Jones, D. D. & Holling, C. S. Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47, 315–332 (1978).

  32. 32.

    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2009).

  33. 33.

    van Nes, E. H., Hirota, M., Holmgren, M. & Scheffer, M. Tipping points in tropical tree cover: linking theory to data. Glob. Change Biol. 20, 1016–1021 (2014).

  34. 34.

    van de Leemput, I. A., Hughes, T. P., van Nes, E. H. & Scheffer, M. Multiple feedbacks and the prevalence of alternate stable states on coral reefs. Coral Reefs 35, 857–865 (2016).

  35. 35.

    Groisman, P. Y. et al. Trends in intense precipitation in the climate record. J. Clim. 18, 1326–1350 (2005).

  36. 36.

    Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

  37. 37.

    Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442–1445 (2006).

  38. 38.

    Groisman, P. Y. & Knight, R. W. Prolonged dry episodes over the conterminous United States: new tendencies emerging during the last 40 years. J. Clim. 21, 1850–1862 (2008).

  39. 39.

    Holmgren, M., Hirota, M., van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Change 3, 755–758 (2013). Illustrates how climate variability might affect ecosystems, by using satellite data to show the effect of higher interannual rainfall variability on tropical tree cover.

  40. 40.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

  41. 41.

    Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

  42. 42.

    da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).

  43. 43.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

  44. 44.

    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

  45. 45.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

  46. 46.

    van Nes, E. H. et al. Fire forbids fifty-fifty forest. PLoS ONE 13, e0191027 (2018).

  47. 47.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

  48. 48.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

  49. 49.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

  50. 50.

    Holmgren, M. & Scheffer, M. El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4, 151–159 (2001).

  51. 51.

    Scheffer, M., Van Nes, E. H., Holmgren, M. & Hughes, T. Pulse-driven loss of top-down control: the critical-rate hypothesis. Ecosystems 11, 226–237 (2008).

  52. 52.

    Staver, A. C., Bond, W. J., Stock, W. D., van Rensburg, S. J. & Waldram, M. S. Browsing and fire interact to suppress tree density in an African savanna. Ecol. Appl. 19, 1909–1919 (2009).

  53. 53.

    Staver, A. C. & Bond, W. J. Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 102, 595–602 (2014).

  54. 54.

    Bond, W. J. What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Evol. Syst. 39, 641–659 (2008).

  55. 55.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

  56. 56.

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

  57. 57.

    Eakin, C. M., Lough, J. M. & Heron, S. F. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Hoppen, M. J. H. & Lough, J. M.) 41–67 (Springer, Berlin, 2009).

  58. 58.

    Done, T. J. in The Ecology of Mangrove and Related Ecosystems (eds Jaccarini, V. & Martens, E) 121–132 (Developments in Hydrobiology 80, Springer, Dordrecht, 1992).

  59. 59.

    Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Integr. Comp. Biol. 32, 674–682 (1992).

  60. 60.

    McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).

  61. 61.

    Barnett, J. & Adger, W. N. Climate change, human security and violent conflict. Polit. Geogr. 26, 639–655 (2007).

  62. 62.

    Wilhite, D. A. in Drought: A Global Assessment Vol. I (ed. Wilhite, D. A.) 3–18 (Routledge, London, 2000).

  63. 63.

    McPeak, J. G. & Barrett, C. B. Differential risk exposure and stochastic poverty traps among East African pastoralists. Am. J. Agric. Econ. 83, 674–679 (2001).

  64. 64.

    Barrett, C. B. & Carter, M. R. The economics of poverty traps and persistent poverty: empirical and policy implications. J. Dev. Stud. 49, 976–990 (2013).

  65. 65.

    Carter, M. R., Little, P. D., Mogues, T. & Negatu, W. Poverty traps and natural disasters in Ethiopia and Honduras. World Dev. 35, 835–856 (2007).

  66. 66.

    Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on human conflict. Science 341, 1235367 (2013).

  67. 67.

    Hsiang, S. M. & Burke, M. Climate, conflict, and social stability: what does the evidence say? Climatic Change 123, 39–55 (2014).

  68. 68.

    Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A. & Lobell, D. B. Warming increases the risk of civil war in Africa. Proc. Natl Acad. Sci. USA 106, 20670–4 (2009).

  69. 69.

    Buhaug, H. et al. One effect to rule them all? A comment on climate and conflict. Climatic Change 127, 391–397 (2014).

  70. 70.

    Buhaug, H. Climate not to blame for African civil wars. Proc. Natl Acad. Sci. USA 107, 16477–16482 (2010).

  71. 71.

    Hsiang, S. M. & Meng, K. C. Reconciling disagreement over climate-conflict results in Africa. Proc. Natl Acad. Sci. USA 111, 2100–2103 (2014).

  72. 72.

    Scheffran, J., Brzoska, M., Kominek, J., Link, P. M. & Schilling, J. Climate change and violent conflict. Science 336, 869–871 (2012).

  73. 73.

    Schleussner, C.-F., Donges, J. F., Donner, R. V. & Schellnhuber, H. J. Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. Proc. Natl Acad. Sci. USA 113, 9216–9221 (2016).

  74. 74.

    Cane, M. A. et al. Temperature and violence. Nat. Clim. Change 4, 234–235 (2014).

  75. 75.

    Raleigh, C., Linke, A. & O’Loughlin, J. Extreme temperatures and violence. Nat. Clim. Change 4, 76–77 (2014).

  76. 76.

    Adams, C., Ide, T., Barnett, J. & Detges, A. Sampling bias in climate–conflict research. Nat. Clim. Change 8, 200–203 (2018).

  77. 77.

    Hsiang, S. M., Meng, K. C. & Cane, M. A. Civil conflicts are associated with the global climate. Nature 476, 438–441 (2011).

  78. 78.

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Cambridge Univ. Press, 2012).

  79. 79.

    Werrell, C. E., Femia, F. & Sternberg, T. Did we see it coming? State fragility, climate vulnerability, and the uprisings in Syria and Egypt. SAIS Rev. Int. Aff. 35, 29–46 (2015).

  80. 80.

    Solh, M. Tackling the drought in Syria. Nature Middle East (27 September 2010).

  81. 81.

    Reuveny, R. Climate change-induced migration and violent conflict. Polit. Geogr. 26, 656–673 (2007).

  82. 82.

    Erian, W., Katlan, B. & Babah, O. Drought Vulnerability in the Arab Region. Case Study: Drought in Syria Ten Years of Scarce Water (2000–2010) (ASCAD and UNISDR, 2011).

  83. 83.

    Wilkes, S. Iraqi refugees in Syria reluctant to return to home permanently: survey. UNHCR (8 October 2010).

  84. 84.

    von Uexkull, N., Croicu, M., Fjelde, H. & Buhaug, H. Civil conflict sensitivity to growing-season drought. Proc. Natl Acad. Sci. USA 113, 12391–12396 (2016).

  85. 85.

    Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R. & Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl Acad. Sci. USA 112, 3241–3246 (2015).

  86. 86.

    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

  87. 87.

    Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2016).

  88. 88.

    Schneider, D. P. & Steig, E. J. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl Acad. Sci. USA 105, 12154–12158 (2008).

  89. 89.

    Ovaskainen, O. & Meerson, B. Stochastic models of population extinction. Trends Ecol. Evol. 25, 643–652 (2010).

  90. 90.

    Wissel, C. A universal law of the characteristic return time near thresholds. Oecologia 65, 101–107 (1984).

  91. 91.

    Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview, Colorado, 2014).

  92. 92.

    Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 31, L23207 (2004).

  93. 93.

    Lenton, T. M. et al. Using GENIE to study a tipping point in the climate system. Phil. Trans. R. Soc. A 367, 871–884 (2009).

  94. 94.

    Kleinen, T., Held, H. & Petschel-Held, G. The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation. Ocean Dynam. 53, 53–63 (2003).

  95. 95.

    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

  96. 96.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

  97. 97.

    Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347, 1317–1319 (2015).

  98. 98.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

  99. 99.

    Gustafson, E. J. & Sturtevant, B. R. Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems 16, 60–74 (2013).

Download references

Acknowledgements

This work was carried out under the programme of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture, and Science (OCW) and received funding from the European Union’s Horizon 2020 research and innovation Programme under the Marie Sklodowska-Curie grant. We thank A. Staal for the fruitful discussions and all the recommendations for literature to include in our tropical forest example, and I. van de Leemput for her input on the coral reef model.

Author information

All authors contributed to the design of the study. B.v.d.B. was responsible for executing the study, with contributions to the code from E.H.v.N., to the Supplementary Methods section from S.B. and to the main paper from M.S. All authors discussed the results and implications and commented on the manuscript at all stages.

Correspondence to Bregje van der Bolt.

Supplementary Information

  1. Supplementary Information

    Supplementary Methods and Supplementary Results, including Supplementary Figures 1–4, Supplementary Table 1 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Schematic representation of how the duration of a climate event may determine whether it invokes a transition to an alternative attractor.
Fig. 2: The relationship between the duration and size of a perturbation in the conditions for invoking a state shift.
Fig. 3: The simulated fate of biomass subject to a gradual slow increase of the harvest rate under a white noise versus a time-correlated stochastic forcing regime in a classical overexploitation model.
Fig. 4: The effect of temporal autocorrelation of a stochastic forcing regime on the likelihood of collapse of the biomass system.
Fig. 5: Combined effects of the autocorrelation and standard deviation of the fluctuations on the value of the driver at which the system shifts.