Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios

Abstract

Anthropogenic forcing is anticipated to increase the magnitude and frequency of extreme events1, the impacts of which will be particularly hard-felt in already vulnerable locations such as Africa2. However, projected changes in African climate extremes remain little explored, particularly in the context of the Paris Agreement targets3,4. Here, using Community Earth System Model low warming simulations5, we examine how heat and hydrological extremes may change in Africa under stabilized 1.5 °C and 2 °C scenarios, focusing on the projected changing likelihood of events that have comparable magnitudes to observed record-breaking seasons. In the Community Earth System Model, limiting end-of-century warming to 1.5 °C is suggested to robustly reduce the frequency of heat extremes compared to 2 °C. In particular, the probability of events similar to the December–February 1991/1992 southern African and 2009/2010 North African heat waves is estimated to be reduced by 25 ± 5% and 20 ± 4%, respectively, if warming is limited to 1.5 °C instead of 2 °C. For hydrometeorological extremes (that is, drought and heavy precipitation), by contrast, signal differences are indistinguishable from the variation between ensemble members. Thus, according to this model, continued efforts to limit warming to 1.5 °C offer considerable benefits in terms of minimizing heat extremes and their associated socio-economic impacts across Africa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: African climate extremes under a changing climate.
Fig. 2: Changes in the likelihood of extreme events in Africa.
Fig. 3: Southern African drought under a changing climate.
Fig. 4: Model ensemble mean ENSO conditions associated with extremely hot southern African summers.

References

  1. 1.

    Report on the Structured Expert Dialogue on the 2013–2015 Review FCCC/SB/2015/INF.1 (UNFCCC, 2015).

  2. 2.

    Niang, I., et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Barros, V.R. et al.) 1199–1265 (IPCC, Cambridge Univ. Press, 2014).

  3. 3.

    Engelbrecht, F. et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 10, 085004 (2015).

    Article  Google Scholar 

  4. 4.

    James, R., Washington, R., Schleussner, C. F., Rogelj, J. & Conway, D. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. WIRES Clim. Change 8, e457 (2017).

    Article  Google Scholar 

  5. 5.

    Sanderson, B. M. et al. Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures. Earth Syst. Dynam. 8, 827–847 (2017).

    Article  Google Scholar 

  6. 6.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  7. 7.

    Hulme, M. et al. 1.5 °C and climate research after the Paris Agreement. Nat. Clim. Change 6, 222–224 (2016).

    Article  Google Scholar 

  8. 8.

    King, A. D. & Karoly, D. J. Climate extremes in Europe at 1.5 and 2 degrees of global warming. Environ. Res. Lett. 12, 114031 (2017).

    Article  Google Scholar 

  9. 9.

    King, A. D., Karoly, D. J. & Henley, B. J. Australian climate extremes at 1.5 °C and 2 °C of global warming. Nat. Clim. Change 7, 412–416 (2017).

    Article  Google Scholar 

  10. 10.

    Mitchell, D. et al. Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geosci. Model Dev. 10, 571–583 (2017).

    Article  Google Scholar 

  11. 11.

    Lehner, F. et al. Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett. 44, 7419–7428 (2017).

    Article  Google Scholar 

  12. 12.

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation – SREX Summary for Policymakers (ed. Field, C. B.) (Cambridge Univ. Press, 2012).

  13. 13.

    Reason, C. J. C. & Keibel, A. Tropical cyclone Eline and its unusual penetration and impacts over the Southern African mainland. Weather Forecast. 19, 789–805 (2004).

    Article  Google Scholar 

  14. 14.

    Russo, S., Marchese, A. F., Sillmann, J. & Immé, G. When will unusual Heat Waves become normal in a warming Africa? Environ. Res. Lett. 11, 054016 (2016).

    Article  Google Scholar 

  15. 15.

    Moyo, E. N. & Nangombe, S. S. Southern Africa’s 2012–13 violent storms: role of climate change. Procedia IUTAM 17, 69–78 (2015).

    Article  Google Scholar 

  16. 16.

    Nangombe, S., Madyiwa, S. & Wang, J. Precursor conditions related to Zimbabwe’s summer droughts. Theor. Appl. Climatol. 131, 413–431 (2016).

    Article  Google Scholar 

  17. 17.

    Manatsa, D., Mushore, T. & Lenouo, A. Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO. Theor. Appl. Climatol. 127, 259–274 (2017).

    Article  Google Scholar 

  18. 18.

    Neelin, J. D., Sahany, S., Stechmann, S. N. & Bernstein, D. N. Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl Acad. Sci. USA 114, 1258–1263 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    WMO Statement on the Status of the Global Climate in 2015 (WMO, 2016); https://public.wmo.int/en/resources/library/wmo-statement-status-of-global-climate-2015

  20. 20.

    Barbier, J., Guichard, D., Bouniol, B., Couvreux, F. & Roehrig, R. Detection of intraseasonal large-scale heat waves: characteristics and historical trends during the Sahelian Spring. J. Clim. 31, 61–80 (2018).

    Article  Google Scholar 

  21. 21.

    Christensen, J. H. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 14 (IPCC, Cambridge Univ. Press, 2013).

  22. 22.

    Masters, J. NOAA: June 2010 the globe’s 4th consecutive warmest month on record. WunderBlog (16 July 2010); https://go.nature.com/2Jngrm0

  23. 23.

    Dai, A. Drought under global warming: a review. WIREs Clim. Change 2, 45–65 (2011).

    Article  Google Scholar 

  24. 24.

    Mulenga, H. M., Rouault, M. & Reason, C. J. C. Dry summers over northeastern South Africa and associated circulation anomalies. Clim. Res. 25, 29–41 (2003).

    Article  Google Scholar 

  25. 25.

    Segele, Z. T., Richman, M. B., Leslie, L. M. & Lamb, P. J. Seasonal-to-interannual variability of ethiopia/horn of Africa monsoon. Part II: Statistical multimodel ensemble rainfall predictions. J. Clim. 28, 3511–3536 (2015).

    Article  Google Scholar 

  26. 26.

    Chiang, J. C. H. & Lintner, B. R. Mechanisms of remote tropical surface warming during El Niño. J. Clim. 18, 4130–4149 (2005).

    Article  Google Scholar 

  27. 27.

    Seneviratne, S. I. et al. Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).

    Article  Google Scholar 

  28. 28.

    Crook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).

    Article  Google Scholar 

  29. 29.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  30. 30.

    Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S. & Mosher, S. Berkeley Earth temperature averaging process. Geoinfor. Geostat. Overview 1, https://doi.org/10.4172/2327-4581.1000103 (2013).

  31. 31.

    Matsuura, K. & Willmott, C. J. Terrestrial Precipitation: 1900–2014 Gridded Monthly Time Series v.4.01 (Univ. Delaware, accessed 5 October 2017); https://climatedataguide.ucar.edu/climate-data/global-land-precipitation-and-temperature-willmott-matsuura-university-delaware

  32. 32.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  33. 33.

    Peterson, T. C., Vose, R., Schmoyer, R. & Razuvaev, V. Global historical climatology network (GHCN) quality control of monthly temperature data. Int. J. Climatol. 18, 1169–1179 (1998).

    Article  Google Scholar 

  34. 34.

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article  Google Scholar 

  35. 35.

    Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project : a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

  36. 36.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  37. 37.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  38. 38.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn Ser. II 93, 5–48 (2015).

    Article  Google Scholar 

  39. 39.

    Compo, G. P. et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  40. 40.

    Poli, P. et al. ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29, 4083–4097 (2016).

    Article  Google Scholar 

  41. 41.

    Massey, F. J. The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (2009).

    Article  Google Scholar 

  42. 42.

    van Vuuren, D. P. et al. The Representative Concentration Pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  43. 43.

    Seager, R., Kushnir, Y., Herweijer, C., Naik, N. & Velez, J. Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Clim. 18, 4065–4088 (2005).

    Article  Google Scholar 

  44. 44.

    Coats, S. et al. Internal ocean–atmosphere variability drives megadroughts in Western North America. Geophys. Res. Lett. 43, 9886–9894 (2016).

    Article  Google Scholar 

  45. 45.

    Routson, C. C., Woodhouse, C. A., Overpeck, J. T., Betancourt, J. L. & McKay, N. P. Teleconnected ocean forcing of western North American droughts and pluvials during the last millennium. Quat. Sci. Rev. 146, 238–250 (2016).

    Article  Google Scholar 

  46. 46.

    Schleussner, C.-F. et al. Differential climate impacts for policy relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst. Dynam. 7, 327–351 (2016).

    Article  Google Scholar 

  47. 47.

    Herger, N., Sanderson, B. M. & Knutti, R. Improved pattern scaling approaches for the use in climate impact studies. Geophys. Res. Lett. 42, 3486–3494 (2015).

    Article  Google Scholar 

  48. 48.

    Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2013).

  49. 49.

    Huang, B. et al. Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grants nos. 41330423 and 41420104006.

Author information

Affiliations

Authors

Contributions

T.Z. designed the research. S.N. analysed and drafted the changes in record-breaking climate extremes in Africa under various levels of climate change. S.H. performed the analysis of ENSO conditions associated with extreme hot southern African summers, and B.W. wrote the draft. W.Z. analysed and drafted the probability changes in extreme events in Africa. L.Z. helped organize and revise the draft. D.L. helped derive the data. The whole manuscript was polished by T.Z., N.S. and W.Z. All authors contributed to the interpretation of the results and improvement of the paper. Special thanks go to L. Ren and K. Khumalo for discussions. Thanks also go to NCAR for the release of the CESM low warming experiment products.

Corresponding author

Correspondence to Tianjun Zhou.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nangombe, S., Zhou, T., Zhang, W. et al. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios. Nature Clim Change 8, 375–380 (2018). https://doi.org/10.1038/s41558-018-0145-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing