Air quality co-benefits of carbon pricing in China

Abstract

Climate policies targeting energy-related CO2 emissions, which act on a global scale over long time horizons, can result in localized, near-term reductions in both air pollution and adverse human health impacts. Focusing on China, the largest energy-using and CO2-emitting nation, we develop a cross-scale modelling approach to quantify these air quality co-benefits, and compare them to the economic costs of climate policy. We simulate the effects of an illustrative climate policy, a price on CO2 emissions. In a policy scenario consistent with China’s recent pledge to reach a peak in CO2 emissions by 2030, we project that national health co-benefits from improved air quality would partially or fully offset policy costs depending on chosen health valuation. Net health co-benefits are found to rise with increasing policy stringency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Changes in energy use and emissions in the 4% Policy scenario compared to the No Policy scenario in 2030.
Fig. 2: Impacts of changing policy stringency on emissions of CO2 and air pollutants.
Fig. 3: Spatial distribution of population-weighted PM2.5.
Fig. 4: Air quality co-benefits of climate policy.

Change history

  • 10 July 2018

    In the version of the Supplementary Information file originally published alongside this Article, on page S2 ‘No Policy’ emissions values were incorrect for black carbon (BC) and primary organic carbon (OC): the sentence: “BC is 195% higher, and OC is 240% higher” should have read: “BC is 95% higher, and OC is 140% higher”. The Supplementary file has now been amended.

References

  1. 1.

    Aunan, K., Fang, J., Vennemo, H., Oye, K. & Seip, H. M. Co-benefits of climate policy—lessons learned from a study in Shanxi, China. Energy Policy 32, 567–581 (2004).

    Article  Google Scholar 

  2. 2.

    Shindell, D. et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335, 183–189 (2012).

    Article  CAS  Google Scholar 

  3. 3.

    McCollum, D. L. et al. Climate policies can help resolve energy security and air pollution challenges. Climatic Change 119, 479–494 (2013).

    Article  Google Scholar 

  4. 4.

    West, J. J. et al. Co-benefits of global greenhouse gas mitigation for future air quality and human health. Nat. Clim. Change 3, 885–889 (2013).

    Article  CAS  Google Scholar 

  5. 5.

    China’s Intended Nationally Defined Contribution (INDC): Enhanced Actions on Climate Change (Department of Climate Change, National Development and Reform Commission, 2015).

  6. 6.

    Nemet, G. F., Holloway, T. & Meier, P. Implications of incorporating air-quality co-benefits into climate change policymaking. Environ. Res. Lett. 5, 14007 (2010).

    Article  CAS  Google Scholar 

  7. 7.

    Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743–800 (2015).

    Article  Google Scholar 

  8. 8.

    Parry, I., Veung, C. & Heine, D. How much carbon pricing is in countries’ own interests? The critical role of co-benefits. Clim. Change Econ. 6, 1550019 (2015).

    Article  Google Scholar 

  9. 9.

    Dong, H. et al. Pursuing air pollutant co-benefits of CO2 mitigation in China: a provincial leveled analysis. Appl. Energ. 144, 165–174 (2015).

    Article  CAS  Google Scholar 

  10. 10.

    Thompson, T. M., Rausch, S., Saari, R. K. & Selin, N. E. A systems approach to evaluating the air quality co-benefits of US carbon policies. Nat. Clim. Change 4, 917–923 (2014).

    Article  Google Scholar 

  11. 11.

    Nielsen, C. P. & Ho, M. S. Clearer Skies Over China (MIT Press, Cambridge, 2013).

  12. 12.

    Shindell, D. T., Lee, Y. & Faluvegi, G. Climate and health impacts of US emissions reductions consistent with 2 °C. Nat. Clim. Change 6, 503–507 (2016).

    Article  Google Scholar 

  13. 13.

    Nam, K. M., Waugh, C. J., Paltsev, S., Reilly, J. M. & Karplus, V. J. Carbon co-benefits of tighter SO2 and NOx regulations in China. Glob. Environ. Change 23, 1648–1661 (2013).

    Article  Google Scholar 

  14. 14.

    He, K. et al. Co-benefits from energy policies in China. Energy 35, 4265–4272 (2010).

    Article  Google Scholar 

  15. 15.

    Zhou, D. China Sustainable Energy Scenarios in 2020 (China Environmental Science Press, 2003).

  16. 16.

    Zhang, D., Rausch, S., Karplus, V. J. & Zhang, X. Quantifying regional economic impacts of CO2 intensity targets in China. Energy Econ. 40, 687–701 (2013).

    Article  Google Scholar 

  17. 17.

    Luo, X., Caron, J., Zhang, D., Zhang, X. & Karplus, V. J. Interprovincial migration and the stringency of energy policy in China. Energy Econ. 58, 164–173 (2016).

    Article  Google Scholar 

  18. 18.

    Springmann, M., Zhang, D. & Karplus, V. J. Consumption-based adjustment of emissions-intensity targets: an economic analysis for China’s provinces. Environ. Resour. Econ. 61, 615–640 (2015).

    Article  Google Scholar 

  19. 19.

    Karplus, V. J., Rausch, S. & Zhang, D. Energy caps: Alternative climate policy instruments for China? Energ. Econ. 56, 422–431 (2016).

    Article  Google Scholar 

  20. 20.

    Zhang, D., Springmann, M. & Karplus, V. J. Equity and emissions trading in China. Climatic Change 134, 131–146 (2016).

    Article  Google Scholar 

  21. 21.

    Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Change 7, 637–641 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Kurokawa, J. et al. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys. 13, 11019–11058 (2013).

    Article  CAS  Google Scholar 

  23. 23.

    MEIC v1.2 (MEIC Research Group, Tsinghua University, 2015); http://www.meicmodel.org/dataset-meic.html

  24. 24.

    Burnett, R. T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122, 397–403 (2014).

    Google Scholar 

  25. 25.

    Driscoll, T. C. et al. US power plant carbon standards and clean air and health co-benefits. Nat. Clim. Change 5, 535–540 (2015).

    Article  CAS  Google Scholar 

  26. 26.

    Fu, T. M. et al. Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution. Atmos. Chem. Phys. 12, 2725–2746 (2012).

    Article  CAS  Google Scholar 

  27. 27.

    Wang, S. et al. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ. Sci. Technol. 45, 9293–9300 (2011).

    Article  CAS  Google Scholar 

  28. 28.

    Wang, Y., Zhang, Q. Q., He, K., Zhang, Q. & Chai, L. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 13, 2635–2652 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    Tol, R. S. J. The social cost of carbon. Annu. Rev. Resour. Econ. 3, 419–443 (2011).

    Article  Google Scholar 

  30. 30.

    Ambient Air Quality Standards GB 3095–2012(China MEP, 2012); http://english.mep.gov.cn/Resources/standards/Air_Environment/quality_standard1/201605/W020160511506615956495.pdf

  31. 31.

    The China Regional Input–Output Tables 2007 (National Bureau of Statistics of China, 2011).

  32. 32.

    China Energy Statistical Yearbook 2008 (National Bureau of Statistics of China, 2011).

  33. 33.

    Narayanan, G. B., Aguiar, A. & McDougall, R. Global Trade, Assistance, and Production: The GTAP 8 Data Base (Center for Global Trade Analysis, Purdue University, 2012).

  34. 34.

    Arrow, K. J. & Debreu, G. Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954).

    Article  Google Scholar 

  35. 35.

    Rutherford, T. F. Applied general equilibrium modeling with MPSGE as a GAMS subsystem: an overview of the modeling framework and syntax. Comput. Econ. 14, 1–46 (1999).

    Article  Google Scholar 

  36. 36.

    Zhang, X., Karplus, V. J., Qi, T., Zhang, D. & He, J. Carbon emissions in China: How far can new efforts bend the curve? Energy Econ. 54, 388–395 (2016).

    Article  Google Scholar 

  37. 37.

    China Statistical Database (National Bureau of Statistics of China, 2012).

  38. 38.

    2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006).

  39. 39.

    Streets, D. G. et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 108(D21), 8809 (2003).

    Article  CAS  Google Scholar 

  40. 40.

    Kharol, S. K. et al. Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides. Geophys. Res. Lett. 40, 1021–1026 (2013).

    Article  CAS  Google Scholar 

  41. 41.

    Webster, M., Paltsev, S., Parsons, J., Reilly, M. J. & Jacoby, H. D. Uncertainty in Greenhouse Gas Emissions and Costs of Atmospheric Stabilization Report No. 165 (MIT Joint Program on the Science and Policy of Global Change, 2008).

  42. 42.

    Quarterly Coal Report April–June 2017 (US Energy Information Administration, 2017).

  43. 43.

    Air Pollutant Emissions Trends Data (US Environmental Protection Agency, 2016); https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data

  44. 44.

    Wang, Y. X., McElroy, M. B., Jacob, D. J. & Yantosca, R. M. A nested grid formulation for chemical transport over Asia: Applications to CO. J. Geophys. Res. 109, D22307 (2004).

    Google Scholar 

  45. 45.

    Walker, J. M., Philip, S., Martin, R. V. & Seinfeld, J. H. Simulation of nitrate, sulfate, and ammonium aerosols over the United States. Atmos. Chem. Phys. 12, 11213–11227 (2012).

    Article  CAS  Google Scholar 

  46. 46.

    Heald, C. L. et al. Atmospheric ammonia and particulate inorganic nitrogen over the United States. Atmos. Chem. Phys. 12, 10295–10312 (2012).

    Article  CAS  Google Scholar 

  47. 47.

    Zhang, X. Y. et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 12, 779–799 (2012).

    Article  CAS  Google Scholar 

  48. 48.

    He, K. et al. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. Atmos. Chem. Phys. 12, 1377–1395 (2012).

    Article  CAS  Google Scholar 

  49. 49.

    Xu, L. et al. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos. Res. 104-105, 264–272 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    Zhao, P. S. et al. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys. 13, 4631–4644 (2013).

    Article  CAS  Google Scholar 

  51. 51.

    Zhang, R. et al. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos. Chem. Phys. 13, 7053–7074 (2013).

    Article  CAS  Google Scholar 

  52. 52.

    Acid Deposition Monitoring Network in East Asia (Asia Center for Air Pollution Research, 2012); http://www.eanet.asia/product/index.html

  53. 53.

    Wang, Y. et al. Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. J. Geophys. Res. Atmos. 119, 10425–10440 (2014).

    Article  Google Scholar 

  54. 54.

    Holt, J., Noelle, E. S. & Susan, S. Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions. Environ. Sci. Technol. 49, 4834–4841 (2015).

    Article  CAS  Google Scholar 

  55. 55.

    Xing, L. et al. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols. Atmos. Chem. Phys. 13, 4307–4318 (2013).

    Article  CAS  Google Scholar 

  56. 56.

    Environmental Benefits Mapping and Analysis Program–Community Edition User’s Manual (RIT International, 2015).

  57. 57.

    Global Burden of Disease Study 2010: Ambient Air Pollution Risk Model 1990–2010 (Institute for Health Metrics and Evaluation, 2013); http://ghdx.healthdata.org/record/global-burden-disease-study-2010-gbd-2010-ambient-air-pollution-risk-model-1990-2010

  58. 58.

    WHOSIS: Detailed Data Files of the WHO Mortality Database (World Health Organization, 2015); http://www.who.int/healthinfo/statistics/mortality_rawdata/en/

  59. 59.

    Gridded Population of the World Version 3 (Center for International Earth Science Information Network, 2005); http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-count-future-estimates

  60. 60.

    World Population Prospects: The 2015 Revision (United Nations, Department of Economic and Social Affairs, Population Division, 2015).

  61. 61.

    Voorhees, A. S. et al. Public health benefits of reducing air pollution in Shanghai: a proof-of-concept methodology with application to BenMAP. Sci. Total Environ. 485–486, 396–405 (2014).

    Article  CAS  Google Scholar 

  62. 62.

    Cao, J. et al. Association between long-term exposure to outdoor air pollution and mortality in China: a cohort study. J. Hazard. Mater. 186, 1594–1600 (2011).

    Article  CAS  Google Scholar 

  63. 63.

    Krewski, D. et al. Extended Follow-Up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality Report No. 140 (Health Effects Institute Research, 2009).

  64. 64.

    Guidelines for Preparing Economic Analyses (US EPA, 2014); https://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0568-50.pdf/$file/EE-0568-50.pdf

  65. 65.

    Viscusi, W. K. in Handbook of the Economics of Risk and Uncertainty Vol. 1 (eds Machina, M. & Viscusi, W. K.) 385–452 (Elsevier, Amsterdam, 2014).

  66. 66.

    Hammitt, J. K. & Robinson, L. A. The income elasticity of the value per statistical life: transferring estimates between high and low income populations. J. Ben. Cost. Anal. 2, 1–29 (2011).

    Article  Google Scholar 

  67. 67.

    Wang, H. & He, J. J. The Value of a Statistical Life: A Contingent Investigation in China Working Paper 5421 (The World Bank Development Research Group, 2010); http://elibrary.worldbank.org/doi/abs/10.1596/1813-9450-5421

Download references

Acknowledgements

We acknowledge the support of Eni S.p.A., the French Development Agency (AFD), ICF International and Shell International Limited, founding sponsors of the China Energy and Climate Project (CECP), and the National Science Foundation of China (project no. 71690244). We further thank the US Department of Energy, Energy Information Agency, for ongoing support for this work under a cooperative agreement (grant no. DE-EI0003030). At MIT the China Energy and Climate Project is part of the MIT Joint Program on the Science and Policy of Global Change, funded through a consortium of industrial sponsors and Federal grants, including the US Department of Energy (DOE) under Integrated Assessment Grant (grant no. DE-FG02-94ER61937). We also acknowledge the MIT Environmental Solutions Initiative, the Tang Fellowship (M.L.) and the MIT Leading Technology and Policy Initiative (K.M.M.).

Author information

Affiliations

Authors

Contributions

V.J.K. and N.E.S. conceived the research. M.L. and C.-T.L. performed the modeling simulations. M.L., C.-T.L., K.M.M. and D.Z. analysed data. D.Z. developed the China Regional Energy Model (C-REM). All authors wrote the paper.

Corresponding author

Correspondence to Valerie J. Karplus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–5, Supplementary Tables 1–5 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, D., Li, C. et al. Air quality co-benefits of carbon pricing in China. Nature Clim Change 8, 398–403 (2018). https://doi.org/10.1038/s41558-018-0139-4

Download citation

Further reading