Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

Abstract

Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic distribution of heat waves.
Fig. 2: SGS PDF of summertime 2 m temperature anomalies.
Fig. 3: GP distribution for the daily mean JJA standardized temperature anomalies.
Fig. 4: PN of heat waves.
Fig. 5: Great Plains low-level jet and heat waves.

Similar content being viewed by others

References

  1. Wolfson, N. & Atlas, R. A simple diagnostic tool for the investigation of persistent phenomena with applications to the summer 1980 U.S. heat wave. Atmos. Ocean 24, 111–127 (1986).

    Article  Google Scholar 

  2. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Article  CAS  Google Scholar 

  3. Karl, T. R. & Knight, R. W. The 1995 Chicago heat wave: how likely is a recurrence? Bull. Am. Meteorol. Soc. 78, 1107–1119 (1997).

    Article  Google Scholar 

  4. Schär, C. et al. The role of increasing temperature variability in European summer heat waves. Nature 427, 332–336 (2004).

    Article  Google Scholar 

  5. Dole, R. et al. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 38, L06702 (2011).

    Article  Google Scholar 

  6. Trenberth, K. E. & Fasullo, J. T. Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J. Geophys. Res. 117, D17103 (2012).

    Article  Google Scholar 

  7. Hoerling, M. Anatomy of an extreme event. J. Clim. 26, 2811–2832 (2013).

    Article  Google Scholar 

  8. IPCC Climate Change 2007: Mitigation of Climate Change (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave. R. & Meyer, L. A.) (Cambridge Univ. Press, 2008).

  9. Duffy, P. B. & Tebaldi, C. Increasing prevalence of extreme summer temperatures in the US. Climatic Change 111, 487–495 (2012).

    Article  Google Scholar 

  10. Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change 119, 345–357 (2013).

    Article  Google Scholar 

  11. Karl, T. R. & Quayle, R. P. The 1980 summer heat wave and drought in historical perspective. Mon. Weather Rev. 109, 2055–2073 (1981).

    Article  Google Scholar 

  12. Jones, B. & et al. Future population exposure to US heat extremes. Nat. Clim. Change 5, 652–655 (2015).

    Article  Google Scholar 

  13. Kim, O.-Y., Wang, B. & Shin, S.-H. How do weather characteristics change in a warming climate? Clim. Dynam. 41, 3261–3281 (2013).

    Article  Google Scholar 

  14. Cattiaux, J., Douville, H., Schoetter, R., Parey, S. & Yiou, P. Projected increase in diurnal and interdiurnal variations of European summer temperatures. Geophys. Res. Lett. 42, 899–907 (2015).

    Article  Google Scholar 

  15. Schneider, Tapio., Bischoff, Tobias. & Płotka, Hanna. Physics of changes in synoptic midlatitude temperature variability. J. Clim. 28, 2312–2331 (2015).

    Article  Google Scholar 

  16. Screen, J. A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Change 4, 577–582 (2014).

    Article  Google Scholar 

  17. Palmer, T. N. Climate extremes and the role of dynamics. Proc. Natl Acad. Sci. USA 110, 5281–5282 (2013).

    Article  CAS  Google Scholar 

  18. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Article  CAS  Google Scholar 

  19. Teng et al. Projected intensification of subseasonal temperature variability and heat waves in the Great Plains. Geophys. Res. Lett. 43, 2165–2173 (2016).

    Article  Google Scholar 

  20. Kirtman, B. P. & Power, S. B. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2014).

  21. Ruff, T. W. & Neelin, J. D. Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett. 39, L04704 (2012).

    Article  Google Scholar 

  22. Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013).

    Article  CAS  Google Scholar 

  23. Monahan, A. H., Fyfe, J. C., Ambaum, M. H. P., Stephenson, D. B. & North, G. R. Empirical orthogonal functions: the medium is the message. J. Clim. 22, 6501–6514 (2009).

    Article  Google Scholar 

  24. Poli, P. et al. ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29, 4083–4097 (2016).

    Article  Google Scholar 

  25. Kay, J. E. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 8, 1333–1349 (2015).

    Article  Google Scholar 

  26. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  27. Sardeshmukh, D. P., Compo, G. P. & Penland, C. Need for caution in interpreting extreme weather statistics. J. Clim. 28, 9166–9187 (2015).

    Article  Google Scholar 

  28. Tollefson, J. The case of the missing heat. Nature 505, 276–278 (2014).

    Article  CAS  Google Scholar 

  29. Solomon, S. et al. The persistently variable 'background' stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011).

    Article  CAS  Google Scholar 

  30. Clement, A. & DiNezio, P. The tropical Pacific Ocean—back in the driver’s seat? Science 343, 976–978 (2014).

    Article  CAS  Google Scholar 

  31. Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015).

    Article  CAS  Google Scholar 

  32. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779 (2012).

    Article  Google Scholar 

  33. Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).

    Article  Google Scholar 

  34. Wallace, J. M., Deser, C., Smoliak, B. V. & Phillips, A. S. in Climate Change: Multidecadal and Beyond (ed. Chang, C.-P.) 1–29 (World Scientific Series on Asia-Pacific Weather and Climate Vol 6, World Scientific, Singapore 2013).

  35. Deser, C., Phillips, A. S., Alexander, M. A. & Smoliak, B. V. Projecting North American climate over the next 50 years: uncertainty due to internal variability. J. Clim. 27, 2271–2296 (2014).

    Article  Google Scholar 

  36. Barnes, E. A. & Screen, J. A. The impact of Arctic warming on the midlatitude jet stream: Can it? Has it? Will it? WIREs Clim. Change 6, 277–286 (2015).

    Article  Google Scholar 

  37. Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitude. Science 348, 324–327 (2015).

    Article  CAS  Google Scholar 

  38. Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).

    Article  CAS  Google Scholar 

  39. Fischer, E. M., Rajczak, J. & Schär, C. Changes in European summer temperature variability revisited. Geophys. Res. Lett. 39, K19702 (2012).

    Google Scholar 

  40. Lehmann, J., Coumou, D., Frieler, K., Eliseev, V. & Livermann, A. Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett. 9, 084002 (2014).

    Article  Google Scholar 

  41. Koster, R. D. et al. GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: overview. J. Hydrometeorol. 7, 590–610 (2006).

    Article  Google Scholar 

  42. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  CAS  Google Scholar 

  43. Walters, C. K. & Winkler, J. A. Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection. Weather Forecast. 16, 513–530 (2001).

    Article  Google Scholar 

  44. Wexler, H. A boundary layer interpretation of the low level jet. Tellus 13, 368–378 (1961).

    Article  Google Scholar 

  45. Jiang, X., Lau, N.-C., Held, I. M. & Ploshay, J. J. Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci. 64, 532–547 (2007).

    Article  Google Scholar 

  46. Cook, K. H., Vizy, E. K., Launer, Z. S. & Patricola, C. M. Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Clim. 21, 6321–6384 (2008).

    Article  Google Scholar 

  47. Kunkel, K. E. et al. Monitoring and understanding trends in extreme storms: state of knowledge. Bull. Am. Meteorol. Soc. 94, 499–514 (2013).

    Article  Google Scholar 

  48. Janssen, E., Wuebbles, D. J., Kunkel, K. E., Olsen, S. C. & Goodman, A. Observational- and model-based trends and projections of extreme precipitation over the contiguous United States. Earth’s Future 2, 99–113 (2014).

    Article  Google Scholar 

  49. Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).

    Article  CAS  Google Scholar 

  50. Tang, Y. et al. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multimodel simulations. Sci. Rep. 7, 5029 (2017).

    Article  Google Scholar 

  51. Cook, K. H., Vizy, E. K., Launer, Z. S. & Patricola, C. M. Springtime intensification of the Great Plains low-level jet and midwest precipitation in GCM simulations of the twenty-first century. J. Clim. 21, 6321–6340 (2008).

    Article  Google Scholar 

  52. Meinhausen, M. The RCP greenhouse gas concentration and their extension from 1765 to 2300. Climatic Change 109, 213 (2011).

    Article  Google Scholar 

  53. Lamarque, J. F. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change 109, 191–212 (2011).

    Article  CAS  Google Scholar 

  54. Stefanon, M., Fabio, D. & Drobinski, P. Heat wave classification over Europe and the Mediterranean region. Environ. Res. Lett. 7, 014023 (2012).

    Article  Google Scholar 

  55. Smyth, P., Ide, K. & Ghil, M. Multiple regimes in Northern Hemisphere height fields via mixture model clustering. J. Atmos. Sci. 56, 3704–3723 (1999).

    Article  Google Scholar 

  56. Tan, P. N., Steinbach, M. & Kumar, V. Introduction to Data Mining (Addison-Wesley, Reading, MA, 2006).

Download references

Acknowledgements

We acknowledge D. Enfield, G. Foltz (NOAA/AOML), E. Johns (NOAA/AOML) and G. Derr (NOAA/AOML) for their comments and suggestions that greatly improved the manuscript. This research was carried out in part under the auspices of the Cooperative Institute for Marine and Atmospheric Studies, a cooperative institute of the University of Miami and the National Oceanic and Atmospheric Administration (NOAA), cooperative agreement NA10OAR4320143. This work was funded by NOAA’s Atlantic Oceanographic and Meteorological Laboratory and by the Climate Observations Division of the NOAA Climate Program Office. S.D. acknowledge funding by NASA grant NNH13AW33I. H.L. acknowledges funding from NOAA Climate Program Office CVP program (GC16-208). S.-K.L. acknowledges funding from NOAA Climate Program Office CVP program (GC16-207). B.P.K. acknowledges funding from the US National Science Foundation (OCE1419569).

Author information

Authors and Affiliations

Authors

Contributions

H.L. conceived the study, designed and performed the statistical analysis and wrote the initial draft of the paper. H.L., R.W., S.D., S.-K.L., G.G., B.K. and R.A. contributed to the discussion and interpretation of the results as well as to the writing of the final version of the paper.

Corresponding author

Correspondence to Hosmay Lopez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figures 1–14

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, H., West, R., Dong, S. et al. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes. Nature Clim Change 8, 414–420 (2018). https://doi.org/10.1038/s41558-018-0116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0116-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing