Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ecological complexity buffers the impacts of future climate on marine consumers


Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities1,2,3. Yet, our understanding of the ecological imprint of ocean acidification (elevated CO2) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems4,5. By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO2. While individual behaviours were impaired by elevated CO2, consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mesocosm study showing how the negative effects of ocean acidification on consumers can be buffered and reversed through ecological complexity.
Fig. 2: Mesocosm study showing how warming can increase risk-taking behaviour in consumers.
Fig. 3: Meta-analysis on the effects of ocean acidification on the performance of fish and decapods at different levels of ecological complexity.
Fig. 4: Conceptual framework of how increasing ecological complexity can buffer the direct negative effects of future climate on marine consumers and drive community dynamics through biotic interactions.


  1. 1.

    Brown, J. H., Whitham, T. G., Ernest, S. K. M. & Gehring, C. A. Complex species interactions and the dynamics of ecological systems: Long-term experiments. Science 293, 643–650 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Leuzinger, S. et al. Do global change experiments overestimate impacts on terrestrial ecosystems?. Trends Ecol. Evol. 26, 236–241 (2011).

    Article  Google Scholar 

  3. 3.

    Rosenblatt, A. E. & Schmitz, O. J. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965–975 (2016).

    Article  Google Scholar 

  4. 4.

    Riebesell, U. & Gattuso, J. P. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 12–14 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob. Change Biol. 22, 974–989 (2016).

    Article  Google Scholar 

  6. 6.

    Schmidt, K. A., Dall, S. R. X. & van Gils, J. A. The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119, 304–316 (2010).

    Article  Google Scholar 

  7. 7.

    Sih, A. Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim. Behav. 85, 1077–1088 (2013).

    Article  Google Scholar 

  8. 8.

    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).

    Article  Google Scholar 

  9. 9.

    McGann, J. P. Associative learning and sensory neuroplasticity: how does it happen and what is it good for? Learn. Mem. 22, 567–576 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Heath, M. R., Speirs, D. C. & Steele, J. H. Understanding patterns and processes in models of trophic cascades. Ecol. Lett. 17, 101–114 (2014).

    Article  Google Scholar 

  12. 12.

    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).

    Article  Google Scholar 

  13. 13.

    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    Article  Google Scholar 

  14. 14.

    Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Russell, B. D. & Connell, S. D. Species interactions drive fish biodiversity loss in a high-CO2 world. Curr. Biol. 27, 2177–2184 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl Acad. Sci. USA 112, 13272–13277 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Pistevos, J. C. A., Nagelkerken, I., Rossi, T., Olmos, M. & Connell, S. D. Ocean acidification and global warming impair shark hunting behaviour and growth. Sci. Rep. 5, 16293 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Portner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar. Ecol. Prog. Ser. 373, 203–217 (2008).

    Article  Google Scholar 

  22. 22.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  23. 23.

    Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Change 6, 89–93 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Connell, S. D. et al. How ocean acidification can benefit calcifiers. Curr. Biol. 27, R95–R96 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).

    Article  Google Scholar 

  26. 26.

    Tuomainen, U. & Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 86, 640–657 (2011).

    Article  Google Scholar 

  27. 27.

    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).

    Article  Google Scholar 

  28. 28.

    Hartman, E. J & Abrahams, M. V. Sensory compensation and the detection of predators: the interaction between chemical and visual information. Proc. R. Soc. B 267, 571–575 2000).

    CAS  Article  Google Scholar 

  29. 29.

    Devine, B. M., Munday, P. L. & Jones, G. P. Rising CO2 concentrations affect settlement behaviour of larval damselfishes. Coral Reefs 31, 229–238 (2012).

    Article  Google Scholar 

  30. 30.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  31. 31.

    Abrantes, K. G., Barnett, A. & Bouillon, S. Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Funct. Ecol. 28, 270–282 (2014).

    Article  Google Scholar 

  32. 32.

    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).

    Article  Google Scholar 

  33. 33.

    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–371 (2005).

    Article  Google Scholar 

  34. 34.

    Goldenberg, S. U., Nagelkerken, I., Ferreira, C. M., Ullah, H. & Connell, S. D. Boosted food web productivity through ocean acidification collapses under warming. Glob. Change Biol. 23, 4177–4184 (2017).

    Article  Google Scholar 

  35. 35.

    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–85 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Houston, A. I., McNamara, J. M. & Hutchinson, J. M. C. General results concerning the trade-off between gaining energy and avoiding predators. Phil. Trans. R. Soc. Lond. B 341, 375–397 (1993).

    Article  Google Scholar 

  37. 37.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation — a review and prospectus. Can. J. Zool. 68, 619–640 1990).

    Article  Google Scholar 

  38. 38.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    CAS  Google Scholar 

  39. 39.

    Bryars, S. & Rowling, K. Benthic habitats of eastern Gulf St Vincent: major changes in benthic cover and composition following European settlement of Adelaide. Trans. R. Soc. S. Aust. 133, 318–338 (2009).

    Google Scholar 

  40. 40.

    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, New York, 2002).

  41. 41.

    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

    Article  Google Scholar 

  42. 42.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  43. 43.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

    Google Scholar 

  44. 44.

    Hedges, L. V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128 (1981).

    Article  Google Scholar 

  45. 45.

    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, Chichester, United Kingdom, 2009).

  46. 46.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  47. 47.

    Knapp, G. & Hartung, J. Improved tests for a random effects meta-regression with a single covariate. Stat. Med. 22, 2693–2710 (2003).

    Article  Google Scholar 

  48. 48.

    Cochran, W. G. The combination of estimates from different experiments. Biometrics 10, 101–129 (1954).

    Article  Google Scholar 

  49. 49.

    Duval, S. & Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).

    CAS  Article  Google Scholar 

Download references


We thank all of the students, W. Hutchinson, M. Gluis, T. Kildea and M. Brustolin for their help with the mesocosm project. Financial support was received through the Australian Research Council Future Fellowship Grant FT120100183 (to I.N.) and FT0991953 (to S.D.C.) and through a grant from the Environment Institute (the University of Adelaide). C.M.F. was supported by a Science Without Borders PhD scholarship through CAPES (Coordination for the Improvement of Higher Education Personnel) Brazil (scholarship no. 13058134).

Author contributions

S.U.G., I.N. S.D.C and C.M.F designed the study, S.U.G., E.M., A.B. and C.M.F. performed the research, S.U.G. analysed the data, S.U.G. conducted the meta-analysis, S.U.G., I.N. and S.D.C. wrote the manuscript and all authors contributed to writing the manuscript.

Author information



Corresponding author

Correspondence to Ivan Nagelkerken.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Methods, Supplementary Tables 1–18, Supplementary Figure 1–7, Supplementary References

Supplementary Table 19

List of all experiments considered in the meta-analysis with their design characteristics

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldenberg, S.U., Nagelkerken, I., Marangon, E. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nature Clim Change 8, 229–233 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing