Perspective | Published:

Integrating human behaviour dynamics into flood disaster risk assessment

Nature Climate Changevolume 8pages193199 (2018) | Download Citation


The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Natural Catastrophe Losses at their Highest for Four Years (Munich RE, 2017).

  2. 2.

    Jongman, B., Ward, P. J. & Aerts, J. C. J. H. Global exposure to river and coastal flooding: Long term trends and changes. Global Environ. Change 22, 823–835 (2012).

  3. 3.

    Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2015).

  4. 4.

    Aerts, J. C. J. H. & Botzen, W. J. Managing exposure to flooding in New York City. Nat. Clim. Change 2, 377 (2012).

  5. 5.

    Mechler, R. & Schinko, T. Identifying the policy space for loss and damage. Science 354, 290–292 (2016).

  6. 6.

    Michel-Kerjan, E. We must build resilience in our communities. Nature 524, 389 (2015).

  7. 7.

    Mysiak, J., Surminski, S., Thieken, A., Mechler, R. & Aerts, J. C. J. H. Sendai framework for disaster risk reduction — success or warning sign for Paris? Nat. Hazards Earth Syst. Sci. 16, 2189–2193 (2016).

  8. 8.

    Hall, J. W., Brown, S., Nicholls, R. J., Pidgeon, N. & Watson, R. Proportionate adaptation. Nat. Clim. Change 2, 833–834 (2012).

  9. 9.

    Kron, W. Flood Risk = Hazard · Values · Vulnerability. Water Int. 30, 58–68 (2005).

  10. 10.

    Merz, B., Hall, J. W., Disse, M. & Schumann, A. Fluvial flood risk management in a changing world. Hydrol. Earth Sys. Sci. 10, 509–527 (2010).

  11. 11.

    Aerts, C. J. H. J. et al. Evaluating flood resilience strategies for coastal megacities. Science 344, 473–475 (2014).

  12. 12.

    Thieken, A. H., Cammerer, H., Dobler, C., Lammel, J. & Schorberl, F. Estimating changes in flood risks and benefits of non-structural adaptation strategies: a case study from Tyrol, Austria. Mitigation Adaptation Strat. Global Change 21, 343–376 (2014).

  13. 13.

    Kleindorfer, P., Kunreuther, H. & Schoemaker, P. Decision Sciences: An Integrative Perspective (Cambridge Univ. Press, 1993).

  14. 14.

    Slovic, P. The Perception of Risk (Earthscan, London, 2000).

  15. 15.

    Tierney, K. Social Roots of Risk: Producing Disaster, Promoting Resilience (Stanford Univ. Press, Palo Alto, 2014).

  16. 16.

    Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters 2nd edn (Routledge, London, 2004).

  17. 17.

    Birkmann, J. Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies (United Nations Univ., Tokyo, New York, Paris, 2013).

  18. 18.

    IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, Cambridge, 2012).

  19. 19.

    Bubeck, P., Botzen, W. J. W., Kreibich, H. & Aerts, J. C. J. H. Long-term development and effectiveness of private flood mitigation measures: An analysis for the German part of the river Rhine. Nat. Haz. Earth Sys. Sci. 12, 3507–3518 (2012).This article shows the effectiveness of household agents contributing to flood risk reduction.

  20. 20.

    Botzen, W. J. W., Aerts, J. C. J. H. & van den Bergh, J. C. J. M. Dependence of flood-risk perceptions on socio-economic and objective risk factors. Water Res. Research 45, 1–15 (2009).

  21. 21.

    Kellens, W., Terpstra, T. & De Maeyer, P. Perception and communication of flood risks: A systematic review of empirical research. Risk Anal. 33, 24–49 (2013).

  22. 22.

    Tversky, A. & Kahneman, D. Availability: A heuristic for judging frequency and probability. Cognitive Psychol. 5, 207–232 (1973).

  23. 23.

    Kunreuther, H. The role of insurance in reducing losses from extreme events: The need for public–private partnerships. Geneva Papers 40, 741–762 (2015).

  24. 24.

    Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).

  25. 25.

    Grossi, P. & Kunreuther, H. Catastrophe Modeling: A New Approach to Managing Risk (Springer, 2005).

  26. 26.

    Jonkman, S. N., Vrijling, J. K. & Vrouwenvelder, A. C. W. M. Methods for the estimation of loss of life due to floods: A literature review and a proposal for a new method. Nat. Hazards 46, 353–389 (2008).

  27. 27.

    Merz, B., Kreibich, H., Schwarze, R. & Thieken, A. Assessment of economic flood damage. Nat. Hazards Earth Syst. Sci. 10, 1697–1724 (2010).

  28. 28.

    Kreibich., H., Botto, A., Merz, B. & Schroter, K. Probabilistic, multivariable flood loss modeling on the mesoscale with BT-FLEMO. Risk Anal. 37, 774–787 (2016).

  29. 29.

    Merz, B. et al. Floods and climate: emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. 14, 1921–1942 (2014).

  30. 30.

    Ward, P. J. et al. Usefulness and limitations of global flood risk models. Nat. Clim. Change 5, 712–715 (2015).

  31. 31.

    Michel-Kerjan, E. & Kunreuther, H. Redesigning flood insurance. Science 333, 408–409 (2011).

  32. 32.

    Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl Acad. Sci. USA 100, 8057–8059 (2003).

  33. 33.

    Cutter, S. L., Boruff, B. J. & Shirley, W. L. Social vulnerability to environmental hazards. Social Sci. Q 84, 242–261 (2003).

  34. 34.

    Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).

  35. 35.

    Cutter, S. L., Boruff, B. J. & Shirley, W. L. Social vulnerability to environmental hazards. Soc. Sci. Q. 84, 242–261 (2003).This paper demonstrates the importance of social vulnerability in natural hazard management.

  36. 36.

    Rufat, S., Tate, E., Burton, C. G. & Maroof, A. S. Social vulnerability to floods: review of case studies and implications for measurement. Int. J. Disaster. Risk 14, 470–486 (2015).

  37. 37.

    Emrich, C. T. & Cutter, S. L. Social vulnerability to climate-sensitive hazards in the southern United States. Weather Clim. Soc. 3, 193–208 (2011).

  38. 38.

    Tate, E. Uncertainty analysis for a social vulnerability index. Ann. Assoc. Am. Geogr. 103, 526–543 (2013).

  39. 39.

    Carr, E. R., Daniel, A. A., De la Poterie, T., Suarez, P. & Koelle, B. Vulnerability assessments, identity and spatial scale challenges in disaster–risk reduction. J. Disaster Risk Studies 7, 1–17 (2015).

  40. 40.

    Masozera, M., Bailey, M. & Kerchner, C. Distribution of impacts of natural disasters across income groups: A case study of New Orleans. Ecol. Econ. 63, 299–306 (2007).

  41. 41.

    Downey, L. Environmental injustice: is race or income a better predictor? Soc. Sci. Q. 79, 766–778 (1998).

  42. 42.

    Brouwer, R., Akter, S., Brander, L. & Haque, E. Socioeconomic vulnerability and adaptation to environmental risk: a case study of climate change and flooding in Bangladesh. Risk Anal. 27, 313–326 (2007).

  43. 43.

    Sultana, F. Living in hazardous waterscapes: gendered vulnerabilities and experiences of floods and disasters. Environ. Hazards 9, 43–53 (2010).

  44. 44.

    Botzen, W. J. W., Michel-Kerjan, E., Kunreuther, H., De Moel, H. & Aerts, J. C. J. H. Political affiliation affects adaptation to climate risks: Evidence from New York City. Clim. Change Lett. 138, 353–360 (2016).

  45. 45.

    Schmidtlein, M. C., Deutsch, R. C., Piegorsch, W. W. & Cutter, S. L. A sensitivity analysis of the social vulnerability index. Risk Anal. 28, 1099–1114 (2008).

  46. 46.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

  47. 47.

    Berkhout, F., Hertin, J. & Jordan, A. Socio-economic futures in climate change impact assessment: using scenarios as ‘learning machines’. Global Environ. Change 12, 83–95 (2002).

  48. 48.

    Hall, J. W. et al. Quantified scenarios analysis of drivers and impacts of changing flood risk in England and Wales: 2030–2100. Environ. Hazards 5, 51–65 (2003).

  49. 49.

    Folke, C. Resilience: the emergence of a perspective for social–ecological system analyses. Global Environ. Change 16, 253–267 (2006).

  50. 50.

    Di Baldassarre, G. et al. Debates — Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resour. Res. 51, 4770–4781 (2015).This article shows the importance of integrating societal activities with hydrological processes in quantitative flood simulations.

  51. 51.

    Dawson, R. J., Peppe, R. & Wang, M. An agent-based model for risk-based flood incident management. Nat. Hazards 59, 167–189 (2011).

  52. 52.

    Surminski, S. et al. in UK Climate Change Risk Assessment Evidence Report. Ch. 6 (Committee on Climate Change, 2016).

  53. 53.

    Merz, B., Vorogushyn, S., Lall, U., Viglione, A. & Blöschl, G. Charting unknown waters — On the role of surprise in flood risk assessment and management. Water Resources Res. 51, 6399–6416 (2015).

  54. 54.

    Hall, J. W., Berkhout, F. & Douglas, R. Responding to adaptation emergencies. Nat. Clim. Change 5, 6–7 (2015).

  55. 55.

    Adger, W. N., Quinn, T., Lorenzoni, I., Murphy, C. & Sweeney, J. Changing social contracts in climate change adaptation. Nat. Clim. Change 3, 330–333 (2013).

  56. 56.

    Palmer, P. I. & Smith, M. J. Model human adaptation to climate change. Nature 512, 365 (2014).

  57. 57.

    Rogers, R. W. in Social Psycho physiology (eds Cacioppo, J. & Petty, R.) Ch. 6 (Guilford Press, 1983).

  58. 58.

    Poussin, J. K., Botzen, W. J. W. & Aerts, J. C. J. H. Effectiveness of flood damage mitigation measures: Empirical evidence from French flood disasters. Global Environ. Change 31, 74–84 (2015).

  59. 59.

    Von Neumann, J. & Morgenstern, O. Theory of Games and Economic Behavior (Princeton Univ. Press, 1947).

  60. 60.

    Kahneman, D. & Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 47, 263–291 (1979).This article demonstrates that boundedly rational behaviour under risk deviates from standard rational behaviour.

  61. 61.

    Botzen, W. J. W. & van den Bergh, J. C. J. M. Bounded rationality, climate risks and insurance: Is there a market for natural disasters? Land Econ. 85, 266–279 (2009).

  62. 62.

    Hudson, P., Botzen, W. J. W., Feyen, L. & Aerts, J. C. J. H. Incentivising flood risk adaptation through risk based insurance premiums: trade-offs between affordability and risk reduction. Ecol. Econ. 125, 1–13 (2016).

  63. 63.

    Tversky, A. & Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertainty 5, 297–323 (1992).

  64. 64.

    Viscusi, W. K. Prospective reference theory: Toward an explanation of the paradoxes. J. Risk Uncertainty 2, 235–264 (1989).

  65. 65.

    Rai, V. & Henry, D. A. Agent-based modelling of consumer energy choices. Nat. Clim. Change 6, 556–562 (2016).

  66. 66.

    Burton, C. & Cutter, S. L. Levee failures and social vulnerability in the Sacramento-San Joaquin delta area, California. Nat. Hazards Rev. 9, 136–149 (2008).

  67. 67.

    Cutter, S. L., Emrich, C., Morath, D. & Dunning, C. M. Integrating social vulnerability into federal flood risk management planning. J. Flood Risk Management 6, 332–344 (2013).

  68. 68.

    Maldonado, A., Collins, T. W., Grineski, S. E. & Chakraborty, J. Exposure to flood hazards in Miami and Houston: Are Hispanic immigrants at greater risk than other social groups? Int. J. Environ. Res. Public Health 13, 775 (2016).

  69. 69.

    Fielding, J. L. Flood risk and inequalities between ethnic groups in the floodplains of England and Wales. Disasters 42, 101–123 (2017).

  70. 70.

    Lazrus, H., Morss, R. E., Demuth, J. L., Lazo, J. K. & Bostrom, A. “Know what to do if you encounter a flash flood”: Mental models analysis for improving flash flood risk communication and public decision making. Risk Anal. 36, 411–427 (2016).

  71. 71.

    Cutter, S. L., Emrich, C. T., Gall, M. & Reeves, R. Flash flood risk and the paradox of urban development. Nat. Hazard Rev. (2018).

  72. 72.

    Di Baldassarre, G. et al. Socio-hydrology: conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 17, 3295–3303 (2013).

  73. 73.

    Viglione, A. et al. Insights from socio-hydrology modelling on dealing with flood risk — roles of collective memory, risk-taking attitude and trust. J. Hydrol. 518, 71–82 (2014).

  74. 74.

    Grames, J., Prskawetz, A., Grass, D. & Bloschl, G. Modelling the interaction between flooding events and economic growth. Proc. Int. Assoc. Hydrol. Sci. 369, 3–6 (2015).

  75. 75.

    Dadson, S. et al. Water security, risk and economic growth: lessons from a dynamical systems model. Water Resour. Res. 53, 6425–6438 (2017).

  76. 76.

    Sivapalan, M., Savenije, H. H. G. & Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Proc. 26, 1270–1276 (2012).

  77. 77.

    Haer, T., Botzen., W. J. & Aerts, J. C. J. H Integrating household mitigation behaviour in flood risk analysis: an agent based model approach. Risk Anal. 12740, 1–15 (2016).This research uses an agent-based model to demonstrate that without considering behavioural aspects, future risk is overestimated by a factor of two.

  78. 78.

    Jenkins, K., Surminski, S., Hall, J. & Crick, F. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Sci. Total Environ. 595, 159–168 (2017).

  79. 79.

    Jenkins, K., Dubbelboer, J., Nikolic, I. & Hall, J. W. An Agent-Based Model of flood risk and insurance. J. Artificial Societies Soc. Simulation (in the press).

  80. 80.

    Haer, T., Botzen, W. & Aerts, J. C. J. H. The effectiveness of flood risk communication strategies and the influence of social networks — Insights from an agent-based model. Environ. Science Pol. 60, 44–42 (2016).

  81. 81.

    Waldrop, M. M. Complexity: the Emerging Science at the Edge of Order and Chaos (Simon & Schuster, 1993).

  82. 82.

    Clarke, K. C. in Handbook of Regional Science (eds Fischer, M. M. & Nijkamp, P.) Ch. 62 (Springer, 2014).

  83. 83.

    Kreibich, H. et al. Adaptation to flood risk — results of international paired flood event studies. Earth’s Future 5, 953–965 (2017).

  84. 84.

    Wind, H. G., Nierop, T. M., de Blois, C. J. & Kok, J. L. Analysis of flood damages from the 1993 and 1995 Meuse floods. Water Resourses Res. 35, 3459–3465 (1999).

  85. 85.

    Pelling, M. The political ecology of flood hazard in urban Guyana. Geoforum 30, 249–261 (1999).

  86. 86.

    Bubeck, P., Botzen, W. J. W. & Aerts, J. C. J. H. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal. 32, 1481–1495 (2012).

  87. 87.

    Koerth, J., Vafeidis, A. T. & Hinkel, J. Household-level coastal adaptation and its drivers: A systematic case study review. Risk Anal. 37, 629–646 (2017).

  88. 88.

    Mechler, R. et al. Managing unnatural disaster risk from climate extremes. Nat. Clim. Change 4, 235–237 (2014).

  89. 89.

    Cutter, S. L. & Gall, M. Sendai targets at risk. Nat. Clim. Change 5, 707–709 (2015).

  90. 90.

    Kunreuther, H., Pauly, M. & McMorrow, S. Insurance and Behavioral Economics: Improving Decisions in the Most Misunderstood Industry (Cambridge Univ. Press, 2013).

  91. 91.

    Botzen, W. J. W. & van den Bergh, J. C. J. M. Risk attitudes to low-probability climate change risks: WTP for flood insurance. J. Econ. Behavior Org. 82, 151–166 (2012).

  92. 92.

    Surminski, S. & Lopez, A. Concept of loss and damage of climate change — a new challenge for climate decision-making? A climate science perspective. Clim. Dev. 7, 267–277 (2014).

  93. 93.

    Jongman, B. et al. Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl Acad. Sci. USA 1073, 2271–2280 (2015).

  94. 94.

    Kunreuther, H. C. & Michel-Kerjan, E. O. At War with the Weather (MIT Press, 2011).

  95. 95.

    Kunreuther, H. C. Mitigating disaster losses through insurance. J. Risk Uncertainty 12, 171–187 (1996).

  96. 96.

    ASC UK Climate Change Risk Assessment 2017 Synthesis Report: Priorities for the Next Five Years (eds Humphrey, K. et al.) (CCC, London, 2016).

  97. 97.

    Aerts, J. C. J. H. et al. in Novel Multi-Sector Partnerships in Disaster Risk Management (eds Aerts, J. & Mysiak, J.) Ch 2, 31–48 (VU Univ. Press, 2016).

Download references


Many thanks to K. Clarke, S. Sweeney, D. Lopez-Carr, C. Funk and the Climate Hazard Group for their support (Department of Geography and Broome Center for Demography, University of California, Santa Barbara. The research was financially supported by NWO Vici grant no. 453-13-006, NWO Vidi grant no. 452.14.005; EU H2020 grant agreement no. 730482; and the UK Economic and Social Research Council (ESRC) through the Centre for Climate Change Economics and Policy.

Author information


  1. Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, The Netherlands

    • J. C. J. H. Aerts
    •  & W. J. Botzen
  2. Utrecht University School of Economics (USE), Utrecht University, Utrecht, The Netherlands

    • W. J. Botzen
  3. Center for Risk Management and Decision Processes, The Wharton School, University of Pennsylvania, Philadelphia, USA

    • W. J. Botzen
    • , E. Michel-Kerjan
    •  & H. Kunreuther
  4. Department of Geography, University of California, Santa Barbara (UCSB), Santa Barbara, USA

    • K. C. Clarke
  5. Department of Geography, University of South Carolina, Columbia, SC, USA

    • S. L. Cutter
  6. Environmental Change Institute, University of Oxford, Oxford, UK

    • J. W. Hall
  7. German Research Centre for Geosciences (GFZ), Potsdam, Germany

    • B. Merz
  8. Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany

    • B. Merz
  9. Euro-Mediterranean Center on Climate Change, Lecce, Italy

    • J. Mysiak
  10. Università Ca’ Foscari, Venezia, Italy

    • J. Mysiak
  11. London School of Economics (LSE), Houghton Street, London, UK

    • S. Surminski


  1. Search for J. C. J. H. Aerts in:

  2. Search for W. J. Botzen in:

  3. Search for K. C. Clarke in:

  4. Search for S. L. Cutter in:

  5. Search for J. W. Hall in:

  6. Search for B. Merz in:

  7. Search for E. Michel-Kerjan in:

  8. Search for J. Mysiak in:

  9. Search for S. Surminski in:

  10. Search for H. Kunreuther in:


All authors contributed ideas and edited the manuscript. In addition, J.A and W.B. conceptually developed the figures. J.A, W.B., K.C., J.H., B.M., J.M., S.S., E.M-K, S.C., H.K., wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. C. J. H. Aerts.

About this article

Publication history





Further reading