Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

Abstract

Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3–4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 14C content and concentration of below-ice dissolved CH4 and CO2 by geological unit.
Fig. 2: Radiocarbon content of coexisting dissolved CH4 and CO2 below ice.
Fig. 3: Mean 14C age of dissolved CH4 in thaw lakes interpolated across Alaska’s North Slope.
Fig. 4: Source apportionment of lake-dissolved CH4 and CO2 below ice.

Similar content being viewed by others

References

  1. Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    Article  Google Scholar 

  2. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–106 (2016).

    Article  CAS  Google Scholar 

  3. Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    Article  CAS  Google Scholar 

  4. Walter, K. M., Smith, L. C. & Chapin, F. S. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Phil. Trans. A. 365, 1657–1676 (2007).

    Article  CAS  Google Scholar 

  5. Bastviken, D., Tranvik, L., Downing, J., Crill, P. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

    Article  CAS  Google Scholar 

  6. Tan, Z. & Zhuang, Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett. 10, 54016 (2015).

    Article  Google Scholar 

  7. Schneider Von Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).

    Article  Google Scholar 

  8. Lawrence, D. M., Slater, A. G. & Swenson, S. C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Clim. 25, 2207–2225 (2012).

    Article  Google Scholar 

  9. Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, 1–12 (2007).

    Article  Google Scholar 

  10. Strauss, J. et al. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013).

    Article  CAS  Google Scholar 

  11. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Article  CAS  Google Scholar 

  12. Matheus Carnevali, P. B. et al. Methane sources in Arctic thermokarst lake sediments on the North Slope of Alaska. Geobiology 13, 181–197 (2015).

    Article  CAS  Google Scholar 

  13. Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, 1–12 (2004).

    Article  Google Scholar 

  14. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  CAS  Google Scholar 

  15. Arp, C. D. et al. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophys. Res. Lett. 43, 1–8 (2016).

    Article  Google Scholar 

  16. Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).

    Article  CAS  Google Scholar 

  17. Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G. & Zimov, S. A. Methane production and bubble emissions from Arctic lakes: isotopic implications for source pathways and ages. J. Geophys. Res. 113, G00A08 (2008).

    Article  Google Scholar 

  18. Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    Article  CAS  Google Scholar 

  19. Zimov, S. A. et al. North Siberian lakes: a methane source fueled by pleistocene carbon. Science 277, 800–802 (1997).

    Article  CAS  Google Scholar 

  20. Brosius, L. S. et al. Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation. J. Geophys. Res. 117, G01022 (2012).

    Article  Google Scholar 

  21. Bouchard, F. et al. Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut). Biogeosciences 12, 7279–7298 (2015).

    Article  Google Scholar 

  22. Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12, 3197–3223 (2015).

    Article  CAS  Google Scholar 

  23. Lindgren, P. R., Grosse, G., Anthony, K. M. W. & Meyer, F. J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery. Biogeosciences 13, 27–44 (2016).

    Article  Google Scholar 

  24. Wik, M., Thornton, B. F., Bastviken, D., Uhlbäck, J. & Crill, P. M. Biased sampling of methane release from northern lakes: a problem for extrapolation. Geophys. Res. Lett. 43, 1256–1262 (2016).

    Article  CAS  Google Scholar 

  25. Matveev, A., Laurion, I., Deshpande, B. N., Bhiry, N. & Vincent, W. F. High methane emissions from thermokarst lakes in subarctic peatlands. Limnol. Oceanogr. 61, S150–S164 (2016).

    Article  CAS  Google Scholar 

  26. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article  CAS  Google Scholar 

  27. Kling, G., Kipphut, G. & Miller, M. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240, 23–36 (1992).

    Article  CAS  Google Scholar 

  28. Negandhi, K. et al. Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic. PLoS. ONE 8, e78204 (2013).

    Article  Google Scholar 

  29. Frohn, R. C., Hinkel, K. M. & Eisner, W. R. Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska. Remote. Sens. Environ. 97, 116–126 (2005).

    Article  Google Scholar 

  30. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  31. Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G. & Wetterich, S. Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia. Encycl. Quat. Sci. 3, 542–552 (2013).

    Article  Google Scholar 

  32. Black, R. F. Gubik Formation of Quaternary Age in Northern Alaska Professional Paper 302-C (USGS, 1964).

  33. Carter, L. D. A Pleistocene sand sea on the Alaskan Arctic Coastal Plain. Science 211, 381–383 (1981).

    Article  CAS  Google Scholar 

  34. Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T. & Stephani, E. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat. Res. 75, 584–596 (2011).

    Article  CAS  Google Scholar 

  35. Jorgenson, M. T. et al. Permafrost Database Development, Characterization, and Mapping for Northern Alaska Final Report (US Fish and Wildlife Service, 2014).

  36. Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A. & Martinez-Cruz, K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences 11, 6791–6811 (2014).

    Article  Google Scholar 

  37. Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269 (2003).

    Article  Google Scholar 

  38. Townsend-Small, A., Akerstrom, F., Arp, C. & Hinkel, K. M. Spatial and temporal variation in methane concentrations, fluxes, and sources in lakes in Arctic Alaska. J. Geophys. Res. Biogeosci. 112, 1–14 (2017).

  39. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).

    Article  CAS  Google Scholar 

  40. Walter Anthony, K. M., Anthony, P., Grosse, G. & Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 5, 419–426 (2012).

    Article  CAS  Google Scholar 

  41. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) 659–740 (IPPC, Cambridge Univ. Press, Cambridge, 2013).

  42. Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Article  Google Scholar 

  43. Hinkel, K. M. et al. Thermokarst lakes on the Arctic Coastal Plain of Alaska: spatial and temporal variability in summer water temperature. Permafr. Periglac. 23, 207–217 (2012).

    Article  Google Scholar 

  44. Hinkel, K. M. et al. Thermokarst lakes on the Arctic Coastal Plain of Alaska: geomorphic controls on bathymetry. Permafr. Periglac. 23, 218–230 (2012).

    Article  Google Scholar 

  45. Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).

    Article  CAS  Google Scholar 

  46. Pack, M. A., Xu, X., Lupascu, M., Kessler, J. D. & Czimczik, C. I. A rapid method for preparing low volume CH4 and CO2 gas samples for C-14 AMS analysis. Org. Geochem. 78, 89–98 (2015).

    Article  CAS  Google Scholar 

  47. Xu, X. et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl. Instrum. Methods Phys. Res. B 259, 320–329 (2007).

    Article  CAS  Google Scholar 

  48. Beverly, R. K. et al. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: status report. Radiocarbon, 52, 301–309 (2010).

  49. Stuiver, M. & Polach, H. Reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  50. Sparrow, K. J. & Kessler, J. D. Efficient collection and preparation of methane from low concentration waters for natural abundance radiocarbon analysis. Limnol. Oceanogr. Methods 15, 601–617 (2017).

    Article  CAS  Google Scholar 

  51. Magen, C. C. et al. A simple headspace equilibration method for measuring dissolved methane. Limnol. Oceanogr. Methods 12, 637–650 (2014).

    Article  Google Scholar 

  52. Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 3rd edn (Wiley, Chichester, 1995).

  53. Cole, J. & Caraco, N. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43, 647–656 (1998).

    Article  CAS  Google Scholar 

  54. Phelps, A., Peterson, K. & Jeffries, M. Methane effiux from high-latitude lakes during spring ice melt. J. Geophys. Res. 103, 29029–29036 (1998).

    Article  CAS  Google Scholar 

  55. Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).

    Article  CAS  Google Scholar 

  56. Wik, M. et al. Energy input is primary controller of methane bubbling in subarctic lakes. Geophys. Res. Lett. 41, 555–560 (2014).

    Article  CAS  Google Scholar 

  57. Boereboom, T., Depoorter, M., Coppens, S. & Tison, J.-L. Gas properties of winter lake ice in Northern Sweden: implication for carbon gas release. Biogeosciences 9, 827–838 (2012).

    Article  CAS  Google Scholar 

  58. Schilder, J. et al. Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes. Geophys. Res. Lett. 40, 5752–5756 (2013).

    Article  CAS  Google Scholar 

  59. Grunblatt, J. & Atwood, D. Mapping lakes for winter liquid water availability using SAR on the north slope of Alaska. Int. J. Appl. Earth Obs. Geoinf. 27, 63–69 (2014).

    Article  Google Scholar 

  60. Hua, Q., Barbetti, M. & Rakowski, A. Z. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55, 2059–2072 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to UIC Science (Ukpeagvik Inupiat Corporation) and the city of Atqasuk for logistical support and access to field sites, in particular A. Danner, N. Harcharek, E. Burnett, K. Newyear and D. Whiteman. We thank J. Chaplin (ChaplinAK Air) for flying and patiently floating. At UC Irvine, we thank M. Crawford, J. G. Mazariegos, M. A. Larios, M. Schweiger, C. McCormick, E. Cirací and R. A. Jimenez for assistance with the equipment and/or sample or data processing, and the KCCAMS staff for assisting with isotope analysis. Funding was provided by the Hellman foundation, UCI Council on Research, Computing and Libraries (to C.I.C.), the ARCS foundation (to C.D.E.), and US National Science Foundation grants AON-1107607 (to K.H. and A.T.-S.) and ARC-1107481 (to C.D.A.). We thank D. H. Mann and P. Groves, who were instrumental in the sediment sampling. We also thank B. Jones and G. Grosse for their valuable assistance in the field.

Author information

Authors and Affiliations

Authors

Contributions

C.D.E, X.X., J.W., C.I.C, B.V.G. and J.W.P. performed the measurements. J.L.S. developed the methodology and produced the figures for the spatial CH4 interpolations. C.D.E, C.I.C., K.M.H., A.T.-S., C.D.A. and B.V.G. were all involved with the field logistics and sampling. B.V.G. contributed to all the work and data related to the sedimentary organic C content sampling. All the authors participated in the interpretation and presentation of the results.

Corresponding authors

Correspondence to Clayton D. Elder or Claudia I. Czimczik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Tables 1–4 and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elder, C.D., Xu, X., Walker, J. et al. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nature Clim Change 8, 166–171 (2018). https://doi.org/10.1038/s41558-017-0066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-017-0066-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology