Historical effects of CO2 and climate trends on global crop water demand


A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of the expected increases in extreme heat exposure2. To quantify the trade-offs between the effects of climate and CO2 on water demand, we use a ‘sink-strength’ model of demand3,4 which relies on the vapour-pressure deficit (VPD), incident radiation and the efficiencies of canopy-radiation use and canopy transpiration; the latter two are both dependent on CO2. This model is applied to a global data set of gridded monthly weather data over the cropping regions of maize, soybean, wheat and rice during the years 1948–2013. We find that this approach agrees well with Penman–Monteith potential evapotranspiration (PM) for the C3 crops of soybean, wheat and rice, where the competing CO2 effects largely cancel each other out, but that water demand in maize is significantly overstated by a demand measure that does not include CO2, such as the PM. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of the global cropping area and by 2.3–3.6 percentage points per decade in different regions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Gridded (0.5°) percent crop cover.
Fig. 2: Water demand for each crop under various demand measures.
Fig. 3: Regional breakdown of linear demand changes for each crop and time period.
Fig. 4: Grid-cell-level linear trends for maize and wheat, which highlight the different water-demand spatial patterns of C3 and C4 crops.


  1. 1.

    Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 193, 120–145 (1948).

    CAS  Article  Google Scholar 

  4. 4.

    Sinclair, T. R., Wherley, B. G., Dukes, M. D. & Cathey, S. E. Penman’s sink-strength model as an improved approach to estimating plant canopy transpiration. Agric. For. Meteorol. 197, 136–141 (2014).

    Article  Google Scholar 

  5. 5.

    Miralles, D. G. et al. El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Clim. Change 4, 122–126 (2014).

    Article  Google Scholar 

  6. 6.

    Mao, J. et al. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ. Res. Lett. 10, 94008 (2015).

    Article  Google Scholar 

  7. 7.

    Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 5, 15–40 (2014).

    Article  Google Scholar 

  9. 9.

    Zhang, Y. et al. Decadal trends in evaporation from global energy and water balances. J. Hydrometeorol. 13, 379–391 (2011).

    Article  Google Scholar 

  10. 10.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Rötter, R. P., Veeneklaas, F. R. & van Diepen, C. A. in Studies in Environmental Science (eds Zwerver, S., Rompaey, R. S. A. R., Kok, M. T. J. & Berk, M. M.) Vol. 65, 947–950 (Elsevier, Amsterdam, 1995).

  12. 12.

    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    Article  Google Scholar 

  14. 14.

    Ray, J. D., Gesch, R. W., Sinclair, T. R. & Allen, L. H. The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant Soil 239, 113–121 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Sinclair, T. R., Tanner, C. B. & Bennett, J. M. Water-use efficiency in crop production. BioScience 34, 36–40 (1984).

    Article  Google Scholar 

  16. 16.

    Holzworth, D. P. et al. APSIM—evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350 (2014).

    Article  Google Scholar 

  17. 17.

    Dietzel, R. et al. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis. Glob. Change Biol. 22, 666–681 (2016).

  18. 18.

    Nussbaumer, E. A. & Pinker, R. T. Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks. J. Geophys. Res. Atmos. 117, D07209 (2012).

    Article  Google Scholar 

  19. 19.

    Ma, Y. & Pinker, R. T. Modeling shortwave radiative fluxes from satellites. J. Geophys. Res. Atmos. 117, D23202 (2012).

    Google Scholar 

  20. 20.

    Stackhouse, P. Jr et al. The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News 21, 10–12 (2011).

    Google Scholar 

  21. 21.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  22. 22.

    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    Article  Google Scholar 

  23. 23.

    Tanner, C. B. & Sinclair, T. R. in Limitations to Efficient Water Use in Crop Production (eds H. Taylor et al.) 1–28 (American Society of Agronomy, Madison, 1983).

  24. 24.

    Sinclair, T. R. & Rufty, T. W. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob. Food Secur. 1, 94–98 (2012).

    Article  Google Scholar 

  25. 25.

    Zwart, S. J., Bastiaanssen, W. G. M., de Fraiture, C. & Molden, D. J. A global benchmark map of water productivity for rainfed and irrigated wheat. Agric. Water Manag. 97, 1617–1627 (2010).

    Article  Google Scholar 

  26. 26.

    Zhang, X., Chen, S., Liu, M., Pei, D. & Sun, H. Improved water use efficiency associated with cultivars and agronomic management in the North China plain. Agron. J. 97, 783–790 (2005).

    Article  Google Scholar 

  27. 27.

    Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    Urban, D. W., Sheffield, J. & Lobell, D. B. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios. Environ. Res. Lett. 10, 45003 (2015).

    Article  Google Scholar 

  29. 29.

    Vanuytrecht, E. & Thorburn, P. J. Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development. Glob. Change Biol. 23, 1806–1820 (2017).

    Article  Google Scholar 

  30. 30.

    Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

  31. 31.

    Piccinni, G., Ko, J., Marek, T. & Howell, T. Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum. Agric. Water Manag. 96, 1698–1704 (2009).

    Article  Google Scholar 

  32. 32.

    Hamilton, S. K., Hussain, M. Z., Bhardwaj, A. K., Basso, B. & Robertson, G. P. Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest. Environ. Res. Lett. 10, 64015 (2015).

    Article  Google Scholar 

  33. 33.

    McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J. Hydrol. 416–417, 182–205 (2012).

    Article  Google Scholar 

  34. 34.

    Roderick, M. L., Hobbins, M. T. & Farquhar, G. D. Pan evaporation trends and the terrestrial water balance. II. Energy balance and interpretation. Geogr. Compass 3, 761–780 (2009).

    Article  Google Scholar 

  35. 35.

    Estes, L. D. et al. Changing water availability during the African maize-growing season, 1979–2010. Environ. Res. Lett. 9, 75005 (2014).

    Article  Google Scholar 

  36. 36.

    Hobbins, M. T., Dai, A., Roderick, M. L. & Farquhar, G. D. Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys. Res. Lett. 35, L12403 (2008).

    Article  Google Scholar 

  37. 37.

    Lobell, D. B. et al. The shifting influence of drought and heat stress for crops in Northeast Australia. Glob. Change Biol. 21, 4115–4127 (2015).

    Article  Google Scholar 

  38. 38.

    Asseng, S. et al. Performance of the APSIM-wheat model in Western Australia. Field Crops Res. 57, 163–179 (1998).

    Article  Google Scholar 

  39. 39.

    Archontoulis, S. V., Miguez, F. E. & Moore, K. J. Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the Midwestern United States. Agron. J. 106, 1025–1040 (2014).

    CAS  Article  Google Scholar 

Download references

Author information




D.W.U. and D.B.L. conceived the study. D.W.U. performed all the analyses. J.S. contributed data and expertise on historical meteorological patterns. All the authors contributed to preparing the manuscript.

Corresponding author

Correspondence to Daniel W. Urban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–6

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urban, D.W., Sheffield, J. & Lobell, D.B. Historical effects of CO2 and climate trends on global crop water demand. Nature Clim Change 7, 901–905 (2017). https://doi.org/10.1038/s41558-017-0011-y

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing