Increased rainfall volume from future convective storms in the US

Abstract

Mesoscale convective system (MCS)-organized convective storms with a size of ~100 km have increased in frequency and intensity in the USA over the past 35 years1, causing fatalities and economic losses2. However, their poor representation in traditional climate models hampers the understanding of their change in the future3. Here, a North American-scale convection-permitting model which is able to realistically simulate MSCs4 is used to investigate their change by the end-of-century under RCP8.5 (ref. 5). A storm-tracking algorithm6 indicates that intense summertime MCS frequency will more than triple in North America. Furthermore, the combined effect of a 15–40% increase in maximum precipitation rates and a significant spreading of regions impacted by heavy precipitation results in up to 80% increases in the total MCS precipitation volume, focussed in a 40 km radius around the storm centre. These typically neglected increases substantially raise future flood risk. Current investments in long-lived infrastructures, such as flood protection and water management systems, need to take these changes into account to improve climate-adaptation practices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of Lagrangian tracking of MCS precipitation and future changes in MCSs.
Fig. 2: Relative frequency changes of MCSs according to their characteristics.
Fig. 3: Precipitation in the 40 MCSs with highest P max in the mid-Atlantic region.
Fig. 4: Current and future MCSs environments.

References

  1. 1.

    Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).

  2. 2.

    Topics Geo: Natural Catastrophes 2015 Analyses, Assessments, Positions (Munich Re, 2016).

  3. 3.

    Prein, A. F. et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361 (2015).

    Article  Google Scholar 

  4. 4.

    Prein, A. F. et al. Simulating North American mesoscale convective systems with a convection-permitting climate model. Clim. Dynam. (in the press); https://doi.org/10.1007/s00382-017-3947-8

  5. 5.

    Clark, A. J., Bullock, R. G., Jensen, T. L., Xue, M. & Kong, F. Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Weather Forecast. 29, 517–542 (2014).

    Article  Google Scholar 

  6. 6.

    74-Year List of Severe Weather Fatalities (NOAA, 2016); http://www.nws.noaa.gov/om/hazstats.shtml

  7. 7.

    Wasko, C., Sharma, A. & Westra, S. Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett. 43, 4026–4032 (2016).

    Article  Google Scholar 

  8. 8.

    Karl, T. R. Global Climate Change Impacts in the United States (Cambridge Univ. Press, Cambridge, 2009).

    Google Scholar 

  9. 9.

    Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  10. 10.

    Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  11. 11.

    Liu, C. et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dynam. 49, 71–95 (2017).

    Article  Google Scholar 

  12. 12.

    Kendon, E. J. et al. Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Am. Meteorol. Soc. 98, 79–93 (2017). 

  13. 13.

    Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

  14. 14.

    Houze, R. A. Mesoscale convective systems. Rev. Geophys. 42, RG4003 (2004).

  15. 15.

    Fritsch, J., Kane, R. & Chelius, C. The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Clim. Appl. Meteorol. 25, 1333–1345 (1986).

    Article  Google Scholar 

  16. 16.

    Diffenbaugh, N. S., Scherer, M. & Trapp, R. J. Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl Acad. Sci. USA 110, 16361–16366 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Gensini, V. A. & Mote, T. L. Downscaled estimates of late 21st century severe weather from CCSM3. Clim. Change 129, 307–321 (2015).

    Article  Google Scholar 

  18. 18.

    Trapp, R. J. et al. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl Acad. Sci. USA 104, 19719–19723 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Carbone, R., Tuttle, J., Ahijevych, D. & Trier, S. Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci. 59, 2033–2056 (2002).

    Article  Google Scholar 

  21. 21.

    Lackmann, G. M. The south-central US flood of May 2010: present and future. J. Clim. 26, 4688–4709 (2013).

    Article  Google Scholar 

  22. 22.

    Schumacher, R. S. & Peters, J. M. Near-surface thermodynamic sensitivities in simulated extreme-rain-producing mesoscale convective systems. Mon. Weather Rev. 145, 2177–2200 (2017).

    Article  Google Scholar 

  23. 23.

    Srivastava, R. A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci. 44, 1752–1774 (1987).

    Article  Google Scholar 

  24. 24.

    Yuter, S. E., Kingsmill, D. E., Nance, L. B. & Löffler-Mang, M. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Applied Meteorol. Clim. 45, 1450–1464 (2006).

    Article  Google Scholar 

  25. 25.

    Rasmussen, R. et al. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J. Clim. 24, 3015–3048 (2011).

    Article  Google Scholar 

  26. 26.

    Doswell, C. Severe Convective Storms (Springer, New York, 2015).

    Google Scholar 

  27. 27.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) (Cambridge Univ. Press, Cambridge, 2014).

  28. 28.

    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Skamarock, W. C. & Klemp, J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008).

    Article  Google Scholar 

  30. 30.

    Thompson, G. & Eidhammer, T. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 71, 3636–3658 (2014).

    Article  Google Scholar 

  31. 31.

    Iacono, M. J. et al. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 113, D13103 (2008).

    Article  Google Scholar 

  32. 32.

    Hong, S.-Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).

    Article  Google Scholar 

  33. 33.

    Niu, G.-Y. et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 116, D12109 (2011).

    Article  Google Scholar 

  34. 34.

    von Storch, H., Langenberg, H. & Feser, F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 128, 3664–3673 (2000).

    Article  Google Scholar 

  35. 35.

    Langhans, W., Schmidli, J. & Schär, C. Bulk convergence of cloud-resolving simulations of moist convection over complex terrain. J. Atmos. Sci. 69, 2207–2228 (2012).

    Article  Google Scholar 

  36. 36.

    Bryan, G. H. & Morrison, H. Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Weather Rev. 140, 202–225 (2012).

    Article  Google Scholar 

  37. 37.

    Lebo, Z. & Morrison, H. Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Weather Rev. 143, 4355–4375 (2015).

    Article  Google Scholar 

  38. 38.

    Varble, A. et al. Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos. 119, D12206 (2014).

    Google Scholar 

  39. 39.

    Fan, J., Wang, Y., Rosenfeld, D. & Liu, X. Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J. Atmos. Sci. 73, 4221–4252 (2016).

    Article  Google Scholar 

  40. 40.

    Dee, D. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  41. 41.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  42. 42.

    Kröner, N. et al. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Clim. Dynam. 48, 3425–3440 (2017).

    Article  Google Scholar 

  43. 43.

    Davis, C., Brown, B. & Bullock, R. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Weather Rev. 134, 1772–1784 (2006).

    Article  Google Scholar 

  44. 44.

    Davis, C. A., Brown, B. G., Bullock, R. & Halley-Gotway, J. The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Weather Forecast. 24, 1252–1267 (2009).

    Article  Google Scholar 

  45. 45.

    Wilks, D. S. Statistical Methods in the Atmospheric Sciences Vol. 100 (Academic, Oxford, 2011). 

    Google Scholar 

  46. 46.

    Trier, S. B., Davis, C. A., Ahijevych, D. A. & Manning, K. W. Use of the parcel buoyancy minimum (B min) to diagnose simulated thermodynamic destabilization. Part I: Methodology and case studies of MCS initiation environments. Mon. Weather Rev. 142, 945–966 (2014).

    Article  Google Scholar 

  47. 47.

    Trier, S. B., Davis, C. A., Ahijevych, D. A. & Manning, K. W. Use of the parcel buoyancy minimum (B min) to diagnose simulated thermodynamic destabilization. Part II: Composite analysis of mature MCS environments. Mon. Weather Rev. 142, 967–990 (2014).

    Article  Google Scholar 

  48. 48.

    High Resolution WRF Simulations of the Current and Future Climate of North America (NCAR, accessed 5 August 2017); https://rda.ucar.edu/datasets/ds612.0/

Download references

Acknowledgements

NCAR is funded by the National Science Foundation (NSF) and this work was partially supported by the NSF EASM Grant AGS-1048829, by the US Army Corps of Engineers (USACE) Climate Preparedness and Resilience Program and NCAR’s Water System program. We thank the ECMWF and National Climate Data Centre for making available their datasets. Computer resources were provided by the Computational and Information Systems Laboratory (NCAR Community Computing, http://n2t.net/ark:/85065/d7wd3xhc).

Author information

Affiliations

Authors

Contributions

A.F.P designed the study, and collected and analysed the data. C.L. and K.I. performed and post-processed the climate simulations. All the authors contributed to the writing process and gave conceptual advice.

Corresponding author

Correspondence to Andreas F. Prein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–9 and Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prein, A.F., Liu, C., Ikeda, K. et al. Increased rainfall volume from future convective storms in the US. Nature Clim Change 7, 880–884 (2017). https://doi.org/10.1038/s41558-017-0007-7

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing