Greenhouse gas emission curves for advanced biofuel supply chains


Most climate change mitigation scenarios that are consistent with the 1.5–2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr−1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr−1 for emission factors less than 60 kgCO2e GJBiofuel −1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Maps of EF85 and its components.
Fig. 2: EF85 emission curves disaggregated for different initial land-cover types.
Fig. 3: Effect of assumptions on potential at different EF85 values.


  1. 1.

    Collins, M. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, Cambridge, 2013).

  2. 2.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (Cambridge Univ. Press, Cambridge, 2014).

  3. 3.

    Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    IEA World Energy Outlook 2014 (OECD/IEA, 2014).

  5. 5.

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

    Article  Google Scholar 

  6. 6.

    Rose, S. K. et al. Bioenergy in energy transformation and climate management. Climatic Change 123, 477–493 (2014).

    Article  Google Scholar 

  7. 7.

    Sorda, G., Banse, M. & Kemfert, C. An overview of biofuel policies across the world. Energy Policy 38, 6977–6988 (2010).

    Article  Google Scholar 

  8. 8.

    Leemans, R., van Amstel, A., Battjes, C., Kreileman, E. & Toet, S. The land cover and carbon cycle consequences of large scale utilizations of biomass as an energy source. Glob. Environ. Change 6, 556–563 (1996).

    Article  Google Scholar 

  9. 9.

    Kartha, S. in Bioenergy and Agriculture: Promises and Challenges (eds Hazel, P. & Pachauri, R. K.) Ch. 4 (International Food Policy Research Institute, 2006).

  10. 10.

    Sustainable Biofuels: Prospects and Challenges 37–48 (The Royal Society, 2008).

  11. 11.

    Gallagher, E. The Gallagher Review of the Indirect Effects of Biofuels Production (The Renewable Fuels Agency, 2008).

  12. 12.

    Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319, 1238–1240 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Hoefnagels, R., Smeets, E. & Faaij, A. Greenhouse gas footprints of different biofuel production systems. Renew. Sustain. Energy Rev. 14, 1661–1694 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Laborde, D. Assessing the Land Use Change Consequences of European Biofuel Policies Report no. S12.580403 (IFPRI, 2011).

  15. 15.

    Wicke, B., Verwij, P., van Meijl, H., van Vuuren, D. & Faaij, A. P. C. Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3, 87–100 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Lamers, P. & Junginger, M. The ‘debt’ is in the detail: A synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod. Bior. 7, 373–385 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Plevin, R. J., Beckman, J., Golub, A. A., Witcover, J. & O’Hare, M. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Environ. Sci. Technol. 49, 2656–2664 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Chum, H. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) Ch. 2 (Cambridge University Press, Cambridge, 2011).

  19. 19.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  20. 20.

    Gibbs, H. K. et al. Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ. Res. Lett. 3, 34001 (2008).

    Article  Google Scholar 

  21. 21.

    Elshout, P. M. F. et al. Greenhouse-gas payback times for crop-based biofuels. Nat. Clim. Change 5, 604–610 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Albanito, F. et al. Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: A global assessment. GCB Bioenerg. 8, 81–95 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    Creutzig, F. et al. Bioenergy andclimate change mitigation: An assessment. |GCB Bioenerg 7, 916–944 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2016).

  26. 26.

    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 14002 (2007).

    Article  Google Scholar 

  27. 27.

    Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Ort, D. R. & No, J. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. 312, 1918–1921 (2006). 

  28. 28.

    Urban, D., Roberts, M. J., Schlenker, W. & Lobell, D. B. Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields: A Letter. Climatic Change 112, 525–533 (2012).

    Article  Google Scholar 

  29. 29.

    Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Gingrich, S. et al. Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy 47, 426–438 (2015).

    Article  Google Scholar 

  32. 32.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article  Google Scholar 

  33. 33.

    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Friend, A. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Müller, C. et al. Implications of climate mitigation for future agricultural production. Environ. Res. Lett. 10, 125004 (2015).

    Article  Google Scholar 

  36. 36.

    Müller, C. et al. Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. Discuss. 1–39 (2016).

  37. 37.

    Tavoni, M. & Socolow, R. Modeling meets science and technology: an introduction to a special issue on negative emissions. Climatic Change 118, 1–14 (2013).

    Article  Google Scholar 

  38. 38.

    Daioglou, V., Wicke, B., Faaij, A. P. C. & van Vuuren, D. P. Competing uses of biomass for energy and chemicals: Implications for long-term global CO2 mitigation potential. GCB Bioenergy 7, 1321–1334 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Malins, C., Searle, S. & Baral, A. A Guide for the Perplexed to the Indirect Effects of Biofuels Production (International Council on Clean Transportation, 2014).

  40. 40.

    Gohin, A. Assessing the land use changes and greenhouse gas emissions of biofuels: elucidating the crop yield effects. Land Econ. 90, 575–586 (2014).

    Article  Google Scholar 

  41. 41.

    European Union Directive 2015/1513 L239, 29 (European Commission, 2015).

  42. 42.

    IPCC 2006 Guidelines for National Greenhouse Gas Inventories (National Greenhouse Gas Inventories Programme, IGES, 2006).

  43. 43.

    European Parliament. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. Off. J. Eur. Union 140, 16–62 (2009).

    Google Scholar 

  44. 44.

    Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis (US Environmental Protection Agency, 2010).

  45. 45.

    Fearnside, P. M. Why a 100-year time horizon should be used for global warming mitigation calculations. Mitig. Adapt. Strateg. Glob. Change 7, 19–30 (2002).

    Article  Google Scholar 

  46. 46.

    ICF Lifecycle Greenhouse Gas Emissions due to Increased Biofuel Production—Methods and Approaches to Account for Lifecycle Greenhouse Gas Emissions from Biofuels Production Over Time (US EPA, 2009).

  47. 47.

    Humpenöder, F. et al. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9, 64029 (2014).

    Article  Google Scholar 

  48. 48.

    Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99–105 (2014).

    Article  Google Scholar 

  49. 49.

    Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  50. 50.

    Beringer, T., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3, 299–312 (2011).

    Article  Google Scholar 

  51. 51.

    Müller, C. et al. Drivers and patterns of land biosphere carbon balance reversal. Environ. Res. Lett. 11, 44002 (2016).

    Article  Google Scholar 

  52. 52.

    Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Chang. 42, 200–214 (2017).

    Article  Google Scholar 

  53. 53.

    Samir, K. & Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article  Google Scholar 

  54. 54.

    O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  55. 55.

    van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article  Google Scholar 

  56. 56.

    Banse, M. et al. Global impact of multinational biofuel mandates on land use, feedstock prices, international trade and land-use greenhouse gas emissions. Landbauforschung 64, 59–72 (2014).

    Google Scholar 

  57. 57.

    Hoefnagels, R., Smeets, E. M. W. & Faaij, A. Greenhouse gas footprints of different biofuel production systems. Renew. Sustain. Energy Rev. 14, 1661–1694 (2010).

    CAS  Article  Google Scholar 

  58. 58.

    Cherubini, F. GHG balances of bioenergy systems - Overview of key steps in the production chain and methodological concerns. Renew. Energy 35, 1565–1573 (2010).

    CAS  Article  Google Scholar 

  59. 59.

    Haberl, H. et al. Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energy Policy 45, 18–23 (2012).

    Article  Google Scholar 

  60. 60.

    Wise, M. et al. An approach to computing marginal land use change carbon intensities for bioenergy in policy applications. Energy Econ. 47, 307–318 (2015).

    Google Scholar 

Download references

Author information




V.D., J.C.D, E.S. B.W., A.F. and D.P.v.V developed the methodological framework. J.C.D. conducted the IMAGE-LPJmL model simulations. E.S. and C.M. checked the consistency of carbon stocks and flows in IMAGE-LPJmL. V.D. calculated the EFs and PBPs. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Vassilis Daioglou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Results (including Supplementary Figures 1–4, Supplementary Tables 1–5), and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daioglou, V., Doelman, J.C., Stehfest, E. et al. Greenhouse gas emission curves for advanced biofuel supply chains. Nature Clim Change 7, 920–924 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing