Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bridging the information gap in organic chemical reactions

Abstract

The varying quality of scientific reports is a well-recognized problem and often results from a lack of standardization and transparency in scientific publications. This situation ultimately leads to prominent complications such as reproducibility issues and the slow uptake of newly developed synthetic methods for pharmaceutical and agrochemical applications. In recent years, various impactful approaches have been advocated to bridge information gaps and to improve the quality of experimental protocols in synthetic organic publications. Here we provide a critical overview of these strategies and present the reader with a versatile set of tools to augment their standard procedures. We formulate eight principles to improve data management in scientific publications relating to data standardization, reproducibility and evaluation, and encourage scientists to go beyond current publication standards. We are aware that this is a substantial effort, but we are convinced that the resulting improved data situation will greatly benefit the progress of chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Information management in scientific publications.
Fig. 2: Visualization of external evaluation parameters for the assessment of chemical processes.
Fig. 3: Screening approaches to evaluate the sensitivity and robustness of a reaction.

Similar content being viewed by others

References

  1. van Gemmeren, M. & List, B. How and why crowd reviewing works. Synlett 32, 885–891 (2021).

    Article  Google Scholar 

  2. Zhang, Y., Chen, S., Liu, Y. & Wang, Q. Route evaluation and Ritter reaction based synthesis of oxazoline acaricide candidates FET-II-L and NK-12. Org. Process Res. Dev. 24, 216–227 (2020).

    Article  CAS  Google Scholar 

  3. Boda, K., Seidel, T. & Gasteiger, J. Structure and reaction based evaluation of synthetic accessibility. J. Comput. Aided Mol. Des. 21, 311–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Laird, T. Editorial reproducibility of results. Org. Process Res. Dev. 18, 921 (2014).

    Article  Google Scholar 

  5. Wethman, R. et al. An under-appreciated source of reproducibility issues in cross-coupling: solid-state decomposition of primary sodium alkoxides in air. ACS Catal. 11, 502–508 (2021).

    Article  CAS  Google Scholar 

  6. Kirklin, W. A. & Becker, W. W. Standardization in chemical industry. Anal. Chem. 23, 1556–1558 (1951).

    Article  CAS  Google Scholar 

  7. Schnitzer, T. et al. How subtle changes can make a difference: reproducibility in complex supramolecular systems. Angew. Chem. Int. Ed. 134, e202206738 (2022).

    Article  Google Scholar 

  8. Tiokhin, L. et al. Honest signaling in academic publishing. PLoS ONE 16, e0246675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cook, C. Publication fraud, dishonesty and deceit. J. Man. Manip. Ther. 20, 57–58 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  Google Scholar 

  11. Schultz, D. & Campeau, L.-C. Harder, better, faster. Nat. Chem. 12, 661–664 (2020).

    Article  PubMed  Google Scholar 

  12. Bergman, R. G. & Danheiser, R. L. Reproducibility in chemical research. Angew. Chem. Int. Ed. 55, 12548–12549 (2016).

    Article  CAS  Google Scholar 

  13. Scott, S. L., Gunnoe, T. B., Fornasiero, P. & Crudden, C. M. To err is human; to reproduce takes time. ACS Catal. 12, 3644–3650 (2022).

    Article  CAS  Google Scholar 

  14. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kozlowski, M. C. On the topic of substrate scope. Org. Lett. 24, 7247–7249 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Kozlov, M. Revealed: the millions of dollars in time wasted making papers fit journal guidelines. Nature https://doi.org/10.1038/d41586-023-01846-9 (2023).

  17. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kearnes, S. M. et al. The Open Reaction database. J. Am. Chem. Soc. 143, 18820–18826 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Tremouilhac, P. et al. The repository Chemotion: infrastructure for sustainable research in chemistry. Angew. Chem. Int. Ed. 59, 22771–22778 (2020).

    Article  CAS  Google Scholar 

  20. Crystal‐Ornelas, R. et al. A guide to using GitHub for developing and versioning data standards and reporting formats. Earth Space Sci. 8, e2021EA001797 (2021).

    Article  Google Scholar 

  21. Strieth-Kalthoff, F. et al. Machine learning for chemical reactivity: the importance of failed experiments. Angew. Chem. Int. Ed. 61, e202204647 (2022).

    Article  CAS  Google Scholar 

  22. Schleinitz, J. et al. Machine learning yield prediction from NiCOlit, a small-size literature data set of Nickel catalyzed C-O couplings. J. Am. Chem. Soc. 144, 14722–14730 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Svejstrup, T. D. et al. Effects of light intensity and reaction temperature on photoreactions in commercial photoreactors. ChemPhotoChem 5, 808–814 (2021).

    Article  CAS  Google Scholar 

  24. Wills, A. G., Poole, D. L., Alder, C. M. & Reid, M. A mechanistic and cautionary case study on the use of alternating potential in electrochemical reactions. ChemElectroChem 7, 2771–2776 (2020).

    Article  CAS  Google Scholar 

  25. Kingston, C. et al. A survival guide for the ‘Electro-curious’. Acc. Chem. Res. 53, 72–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Leech, M. C. & Lam, K. A practical guide to electrosynthesis. Nat. Rev. Chem. 6, 275–286 (2022).

    Article  PubMed  Google Scholar 

  27. Beil, S. B., Pollok, D. & Waldvogel, S. R. Reproducibility in electroorganic synthesis—myths and misunderstandings. Angew. Chem. Int. Ed. 60, 14750–14759 (2021).

    Article  CAS  Google Scholar 

  28. Hone, C. A. & Kappe, C. O. Towards the standardization of flow chemistry protocols for organic reactions. Chem. Methods 1, 454–467 (2021).

    Article  CAS  Google Scholar 

  29. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Dreher, S. D. & Krska, S. W. Chemistry informer libraries: conception, early experience and role in the future of cheminformatics. Acc. Chem. Res. 54, 1586–1596 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Kutchukian, P. S. et al. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bess, E. N., Bischoff, A. J. & Sigman, M. S. Designer substrate library for quantitative, predictive modeling of reaction performance. Proc. Natl Acad. Sci. USA 111, 14698–14703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kariofillis, S. K. et al. Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J. Am. Chem. Soc. 144, 1045–1055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stevens, J. M. et al. Advancing base metal catalysis through data science: insight and predictive models for Ni-catalyzed borylation through supervised machine learning. Organometallics 41, 1847–1864 (2022).

    Article  CAS  Google Scholar 

  36. Gensch, T. et al. Design and application of a screening set for monophosphine ligands in cross-coupling. ACS Catal. 12, 7773–7780 (2022).

    Article  CAS  Google Scholar 

  37. Calvo-Flores, F. G. Sustainable chemistry metrics. Chem. Sus. Chem 2, 905–919 (2009).

    Article  CAS  Google Scholar 

  38. Constable, D. J. C., Curzons, A. D. & Cunningham, V. L. Metrics to ‘green’ chemistry—which are the best? Green Chem. 4, 521–527 (2002).

    Article  CAS  Google Scholar 

  39. Curzons, A. D., Mortimer, D. N., Constable, D. J. C. & Cunningham, V. L. So you think your process is green, how do you know?—Using principles of sustainability to determine what is green—a corporate perspective. Green Chem. 3, 1–6 (2001).

    Article  CAS  Google Scholar 

  40. van Aken, K., Strekowski, L. & Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. 2, 3 (2006).

    PubMed  PubMed Central  Google Scholar 

  41. Anastas, P. T. & Lankey, R. L. Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem. 2, 289–295 (2000).

    Article  CAS  Google Scholar 

  42. Sheldon, R. A. Metrics of green chemistry and sustainability: past, present and future. ACS Sustain. Chem. Eng. 6, 32–48 (2018).

    Article  CAS  Google Scholar 

  43. Anastas, P. T. & Warner, J. C. Green Chemistry. Theory and Practice 1st edn (Oxford Univ. Press, 1998).

  44. Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Trost, B. M. On inventing reactions for atom economy. Acc. Chem. Res. 35, 695–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Sheldon, R. A. The E Factor: fifteen years on. Green Chem. 9, 1273–1283 (2007).

    Article  Google Scholar 

  47. Sheldon, R. A. Atom efficiency and catalysis in organic synthesis. Pure Appl. Chem. 72, 1233–1246 (2000).

    Article  CAS  Google Scholar 

  48. Sheldon, R. A. Organic synthesis—past, present and future. Chem. Ind. 23, 903–906 (1992).

    Google Scholar 

  49. Jimenez-Gonzalez, C., Ponder, C. S., Broxterman, Q. B. & Manley, J. B. Using the right green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org. Process Res. Dev. 15, 912–917 (2011).

    Article  CAS  Google Scholar 

  50. Poliakoff, M. & Licence, P. Sustainable technology: green chemistry. Nature 450, 810–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Gaich, T. & Baran, P. S. Aiming for the ideal synthesis. J. Org. Chem. 75, 4657–4673 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Heinzle, E. et al. Ecological and economic objective functions for screening in integrated development of fine chemical processes. Ind. Eng. Chem. Res. 37, 3395–3407 (1998).

    Article  CAS  Google Scholar 

  53. Fussler, C. & James, P. Driving ECO-innovation. A Breakthrough Discipline for Innovation and Sustainability (Pitman, 1996).

  54. Sajid, M. & Płotka-Wasylka, J. Green analytical chemistry metrics: a review. Talanta 238, 123046 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Pena-Pereira, F., Wojnowski, W. & Tobiszewski, M. AGREE-analytical GREEnness metric approach and software. Anal. Chem. 92, 10076–10082 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lie, Y., Ortiz, P., Vendamme, R., Vanbroekhoven, K. & Farmer, T. J. BioLogicTool: a simple visual tool for assisting in the logical selection of pathways from biomass to products. Ind. Eng. Chem. Res. 58, 15945–15957 (2019).

    Article  CAS  Google Scholar 

  57. Phan, T. V. T., Gallardo, C. & Mane, J. GREEN MOTION: a new and easy to use green chemistry metric from laboratories to industry. Green Chem. 17, 2846–2852 (2015).

    Article  CAS  Google Scholar 

  58. Andraos, J. Unification of reaction metrics for green chemistry: applications to reaction analysis. Org. Process Res. Dev. 9, 149–163 (2005).

    Article  CAS  Google Scholar 

  59. Lapkin, A. & Constable, D. (eds) Green Chemistry Metrics. Measuring and Monitoring Sustainable Processes (Wiley-Blackwell, 2009).

  60. Goodhart, C. A. E. (ed.) Monetary Theory and Practice (Macmillan, 1984).

  61. Collins, K. D., Gensch, T. & Glorius, F. Contemporary screening approaches to reaction discovery and development. Nat. Chem. 6, 859–871 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Dev. 23, 1213–1242 (2019).

    Article  CAS  Google Scholar 

  63. Prieto Kullmer, C. N. et al. Accelerating reaction generality and mechanistic insight through additive mapping. Science 376, 532–539 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gensch, T., Teders, M. & Glorius, F. Approach to comparing the functional group tolerance of reactions. J. Org. Chem. 82, 9154–9159 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Bayeh, L., Le, P. Q. & Tambar, U. K. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block. Nature 547, 196–200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Leger, P. R., Murphy, R. A., Pushkarskaya, E. & Sarpong, R. Synthetic efforts toward the Lycopodium alkaloids inspires a hydrogen iodide mediated method for the hydroamination and hydroetherification of olefins. Chemistry 21, 4377–4383 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Beutner, G. L. et al. Palladium-catalyzed amidation and amination of (hetero)aryl chlorides under homogeneous conditions enabled by a soluble DBU/NaTFA dual-base system. Org. Process Res. Dev. 23, 1529–1537 (2019).

    Article  CAS  Google Scholar 

  68. Gensch, T. & Glorius, F. The straight dope on the scope of chemical reactions. Science 352, 294–295 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Collins, K. D. & Glorius, F. Intermolecular reaction screening as a tool for reaction evaluation. Acc. Chem. Res. 48, 619–627 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Friis, S. D., Johansson, M. J. & Ackermann, L. Cobalt-catalysed C–H methylation for late-stage drug diversification. Nat. Chem. 12, 511–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Richardson, J., Ruble, J. C., Love, E. A. & Berritt, S. A method for identifying and developing functional group tolerant catalytic reactions: application to the Buchwald–Hartwig amination. J. Org. Chem. 82, 3741–3750 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Simon, K. et al. Automated flow and real-time analytics approach for screening functional group tolerance in heterogeneous catalytic reactions. Catal. Sci. Technol. 12, 1799–1811 (2022).

    Article  CAS  Google Scholar 

  73. Collins, K. D., Rühling, A., Lied, F. & Glorius, F. Rapid assessment of protecting-group stability by using a robustness screen. Chemistry 20, 3800–3805 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Anhäuser, L., Teders, M., Rentmeister, A. & Glorius, F. Bio-additive-based screening: toward evaluation of the biocompatibility of chemical reactions. Nat. Protoc. 14, 2599–2626 (2019).

    Article  PubMed  Google Scholar 

  75. Pitzer, L., Schäfers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).

    Article  CAS  Google Scholar 

  76. Strehl, J. & Hilt, G. Electrochemical, iodine-mediated α-C-H amination of ketones by umpolung of silyl enol ethers. Org. Lett. 22, 5968–5972 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Strehl, J. & Hilt, G. Synthesis of symmetrical and unsymmetrical thiosulfonates from disulfides through electrochemically induced disulfide bond metathesis and site‐selective oxidation. Eur. J. Org. Chem. 2022, e202101007 (2022).

    Article  CAS  Google Scholar 

  78. Guo, W., Wang, M., Han, Z., Huang, H. & Sun, J. Organocatalytic asymmetric synthesis of α-amino esters from sulfoxonium ylides. Chem. Sci. 12, 11191–11196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, Y. et al. Carbene-catalyzed enantioselective aromatic N-nucleophilic addition of heteroarenes to ketones. Angew. Chem. Int. Ed. 59, 442–448 (2020).

    Article  CAS  Google Scholar 

  80. Uttry, A., Mal, S. & van Gemmeren, M. Late-stage β-C(sp3)-H deuteration of carboxylic acids. J. Am. Chem. Soc. 143, 10895–10901 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Xie, H., Jiang, J. & Wang, J. Rhodium(III)-catalyzed C-H/N-H functionalization with hydrogen evolution. Chemistry 26, 7365–7368 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Heusler, A., Fliege, J., Wagener, T. & Glorius, F. Substituted dihydropyridine synthesis by dearomatization of pyridines. Angew. Chem. Int. Ed. 60, 13793–13797 (2021).

    Article  CAS  Google Scholar 

  83. Moock, D., Wagener, T., Hu, T., Gallagher, T. & Glorius, F. Enantio- and diastereoselective, complete hydrogenation of benzofurans by cascade catalysis. Angew. Chem. Int. Ed. 60, 13677–13681 (2021).

    Article  CAS  Google Scholar 

  84. Liu, J., Morgan, S. & Hoover, J. M. Cobalt‐catalyzed aerobic oxidative cyclization of 2‐aminoanilines with isonitriles: facile access to 2‐aminobenzimidazoles. ChemCatChem 12, 1297–1301 (2020).

    Article  CAS  Google Scholar 

  85. Wu, H., Dai, W., Saravanamurugan, S., Li, H. & Yang, S. Endogenous X–C=O species enable catalyst-free formylation prerequisite for CO2 reductive upgrading. Green Chem. 22, 5822–5832 (2020).

    Article  CAS  Google Scholar 

  86. Su, X.-D. et al. Additive-free, visible-light-enabled decarboxylative alkylation of enamides. Org. Lett. 23, 8262–8266 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Lapkin, A. & Constable, D. J. C. Green Chemistry Metrics (Wiley, 2008).

  88. Andraos, J. & Sayed, M. On the use of ‘green’ metrics in the undergraduate organic chemistry lecture and lab to assess the mass efficiency of organic reactions. J. Chem. Educ. 84, 1004 (2007).

    Article  CAS  Google Scholar 

  89. Sandfort, F., Knecht, T., Pinkert, T., Daniliuc, C. G. & Glorius, F. Site-selective thiolation of (multi)halogenated heteroarenes. J. Am. Chem. Soc. 142, 6913–6919 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Dalton (Bayer AG), F. Katzenburg (University of Münster) and L. Quach (Evonik) for helpful assistance and discussions. This work received generous financial support from the Deutsche Forschungsgemeinschaft (Leibniz Award, SFB 1459).

Author information

Authors and Affiliations

Authors

Contributions

All authors were part of the conceptualization, investigation and writing of this Perspective, and they all approved the final version of the manuscript.

Corresponding author

Correspondence to Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jason Stevens, Samantha Kanza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schrader, M.L., Schäfer, F.R., Schäfers, F. et al. Bridging the information gap in organic chemical reactions. Nat. Chem. 16, 491–498 (2024). https://doi.org/10.1038/s41557-024-01470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01470-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing