Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ni-catalysed assembly of axially chiral alkenes from alkynyl tetracoordinate borons via 1,3-metallate shift

Abstract

Asymmetric synthesis based on a metallate shift of tetracoordinate borons is an intriguing and challenging topic. Despite the construction of central chirality from tetracoordinate boron species via a 1,2-metallate shift, catalytic asymmetric synthesis of axially chiral compounds from such boron ‘ate’ complexes is an ongoing challenge. Axially chiral alkenes have received great attention due to their unique characteristics and intriguing molecular scaffolds. Here we report an enantioselective nickel-catalysed strategy for the construction of axially chiral alkenes via a 1,3-metallate shift of alkynyl tetracoordinate boron species. The chemoselectivity, regioselectivity and atroposelectivity can be regulated and well-controlled from readily accessible starting materials with a cheap transition-metal catalyst. Downstream transformations indicate the powerful conversion ability of such compounds in this protocol, and late-stage elaborations of bioactive compounds can also be achieved. Mechanistic experiments reveal that regioselective syn-addition of an aryl–Ni complex with a carbon–carbon triple bond and subsequent 1,3-phenyl migration are the two key steps for the synthesis of axially chiral alkenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background, hypothesis and our strategy.
Fig. 2: Synthetic applications.
Fig. 3: Mechanistic control experiments and possible catalytic cycle.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition no. 2243354 (51). The data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

References

  1. Zweifel, G., Arzoumanian, H. & Whitney, C. C. A convenient stereoselective synthesis of substituted alkenes via hydroboration-iodination of alkynes. J. Am. Chem. Soc. 89, 3652–3653 (1967).

    CAS  Google Scholar 

  2. Ishikura, M. & Terashima, M. A new pathway into [b]-annelated indole derivatives through trialkyl(1-methyl-2-indolyl) borates. J. Chem. Soc. J. Chem. Soc. 1991, 1219–1221 (1991).

    Google Scholar 

  3. Kischkewitz, M., Okamoto, K., Mück-Lichtenfeld, C. & Studer, A. Radical-polar crossover reactions of vinylboron ate complexes. Science 355, 936–938 (2017).

    CAS  Google Scholar 

  4. Silvi, M., Sandford, C. & Aggarwal, V. K. Merging photoredox with 1,2-metallate rearrangements: the photochemical alkylation of vinyl boronate complexes. J. Am. Chem. Soc. 139, 5736–5739 (2017).

    CAS  PubMed  Google Scholar 

  5. Yang, K. & Song, Q. Tetracoordinate boron intermediates enable unconventional transformations. Acc. Chem. Res. 54, 2298–2312 (2021).

    CAS  PubMed  Google Scholar 

  6. Binger, P. & Koster, R. Synthesen von und mit Alkinylboranaten. Tetrahedron Lett. 6, 1901–1906 (1965).

    Google Scholar 

  7. Zu, B., Guo, Y. & He, C. Catalytic enantioselective construction of chiroptical boron stereogenic compounds. J. Am. Chem. Soc. 143, 16302–16310 (2021).

    CAS  PubMed  Google Scholar 

  8. Zu, B., Guo, Y., Ren, L.-Q., Li, Y. & He, C. Catalytic enantioselective synthesis of boron-stereogenic BODIPYs. Nat. Synth. 2, 564–571 (2023).

    Google Scholar 

  9. Ma, X. et al. Modular assembly of versatile tetrasubstituted alkenyl monohalides from alkynyl tetracoordinate borons. Chem 9, 1164–1181 (2023).

    CAS  Google Scholar 

  10. Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Miyaura, N., Yamada, K. & Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 20, 3437–3440 (1979).

    Google Scholar 

  12. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    CAS  Google Scholar 

  13. Han, J. et al. Pd/Xu-Phos-catalyzed asymmetric elimination of fully substituted enol triflates into axially chiral trisubstituted allenes. Sci. Adv. 9, eadg1002 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng, J. K., Xiang, S.-H. & Tan, B. Organocatalytic enantioselective synthesis of axially chiral molecules: development of strategies and skeletons. Acc. Chem. Res. 55, 2920–2937 (2022).

    CAS  PubMed  Google Scholar 

  15. Zhu, S., Mao, J.-H., Cheng, J. K., Xiang, S.-H. & Tan, B. Discovery and organocatalytic enantioselective construction of axially chiral cyclohexadienylidene skeletons. Chem 8, 2529–2541 (2022).

    CAS  Google Scholar 

  16. Zhou, M. et al. Asymmetric synthesis of vicinal tetrasubstituted diamines via reductive coupling of ketimines templated by chiral diborons. Angew. Chem. Int. Ed. 135, e202300334 (2023).

    Google Scholar 

  17. Zhu, Y., Dong, W. & Tang, W. Palladium-catalyzed cross-couplings in the synthesis of agrochemicals. Adv. Agrochem. 1, 125–138 (2022).

    Google Scholar 

  18. Sun, J., Yang, H. & Tang, W. Recent advances in total syntheses of complex dimeric natural products. Chem. Soc. Rev. 50, 2320–2336 (2021).

    CAS  PubMed  Google Scholar 

  19. Matteson, D. S. Boronic esters in asymmetric synthesis. J. Org. Chem. 78, 10009–10023 (2013).

    CAS  PubMed  Google Scholar 

  20. Matteson, D. S. & Ray, R. Directed chiral synthesis with pinanediol boronic esters. J. Am. Chem. Soc. 102, 7590–7591 (1980).

    CAS  Google Scholar 

  21. Stymiest, J. L., Dutheuil, G., Mahmood, A. & Aggarwal, V. K. Lithiated carbamates: chiral carbenoids for iterative homologation of boranes and boronic esters. Angew. Chem. Int. Ed. 46, 7491–7494 (2007).

    CAS  Google Scholar 

  22. Stymiest, J. L., Bagutski, V., French, R. & Aggarwal, V. K. Enantiodivergent conversion of chiral secondary alcohols into tertiary alcohols. Nature 456, 778–782 (2008).

    CAS  PubMed  Google Scholar 

  23. Beckmann, E., Desai, V. & Hoppe, D. Stereospecific reaction of α-carbamoyloxy-2-alkenylboronates and α-carbamoyloxy-alkylboronates with Grignard reagents—synthesis of highly enantioenriched secondary alcohols. Synlett 13, 2275–2280 (2004).

    Google Scholar 

  24. Tao, Z., Robb, K. A., Panger, J. L. & Denmark, S. E. Enantioselective, Lewis base-catalyzed carbosulfenylation of alkenylboronates by 1,2-boronate migration. J. Am. Chem. Soc. 140, 15621–15625 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fairchild, M. E., Noble, A. & Aggarwal, V. K. Diastereodivergent synthesis of cyclopentyl boronic esters bearing contiguous fully substituted stereocenters. Angew. Chem. Int. Ed. 61, e202205816 (2022).

    CAS  Google Scholar 

  26. Fasano, V., Mykura, R. C., Fordham, J. M. & Aggarwal, V. K. Automated stereocontrolled assembly-line synthesis of organic molecules. Nat. Synth. 1, 902–907 (2022).

    Google Scholar 

  27. Yeung, K., Mykura, R. C. & Aggarwal, V. K. Lithiation-borylation methodology in the total synthesis of natural products. Nat. Synth. 1, 117–126 (2022).

    Google Scholar 

  28. Bootwicha, T., Feilner, J. M., Myers, E. L. & Aggarwal, V. K. Iterative assembly line synthesis of polypropionates with full stereocontrol. Nat. Chem. 9, 896–902 (2017).

    CAS  PubMed  Google Scholar 

  29. Brown, H. C. & Zweifel, G. Hydroboration. IX. The hydroboration of cyclic and bicyclic olefins-stereochemistry of the hydroboration reaction. J. Am. Chem. Soc. 83, 2544–2551 (1961).

    CAS  Google Scholar 

  30. Sandford, C. & Aggarwal, V. K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem. Commun. 53, 5481–5494 (2017).

    CAS  Google Scholar 

  31. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chierchia, M., Law, C. & Morken, J. P. Nickel-catalyzed enantioselective conjunctive cross-coupling of 9-BBN borates. Angew. Chem. Int. Ed. 56, 11870–11874 (2017).

    CAS  Google Scholar 

  33. Chierchia, M., Xu, P., Lovinger, G. J. & Morken, J. P. Enantioselective radical addition/cross-coupling of organozinc reagents, alkyl iodides and alkenyl boron reagents. Angew. Chem. Int. Ed. 58, 14245–14249 (2019).

    CAS  Google Scholar 

  34. Namirembe, S. & Morken, J. P. Reactions of organoboron compounds enabled by catalyst-promoted metalate shifts. Chem. Soc. Rev. 48, 3464–3474 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Panda, S. & Ready, J. M. Palladium-catalyzed asymmetric three-component coupling of boronic esters, indoles and allylic acetates. J. Am. Chem. Soc. 139, 6038–6041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis, C. R., Fu, Y., Liu, P. & Ready, J. M. Mechanistic basis for the iridium-catalyzed enantioselective allylation of alkenyl boronates. J. Am. Chem. Soc. 144, 16118–16130 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Davis, C. R., Luvaga, I. K. & Ready, J. M. Enantioselective allylation of alkenyl boronates promotes a 1,2-metalate rearrangement with 1,3-diastereocontrol. J. Am. Chem. Soc. 143, 4921–4927 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma, H. A., Essman, J. Z. & Jacobsen, E. N. Enantioselective catalytic 1,2-boronate rearrangements. Science 374, 752–757 (2021).

    CAS  PubMed Central  Google Scholar 

  39. Matteson, D. S. α-Halo boronic esters in asymmetric synthesis. Tetrahedron 54, 10555–10607 (1998).

    CAS  Google Scholar 

  40. Jonker, S. J. T. et al. Organocatalytic synthesis of α-trifluoromethyl allylboronic acids by enantioselective 1,2-borotropic migration. J. Am. Chem. Soc. 142, 21254–21259 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Q., Eriksson, L. & Szabó, K. J. Catalytic homologation-allylboration sequence for diastereo- and enantioselective synthesis of densely functionalized β-fluorohydrins with tertiary fluoride stereocenters. Angew. Chem. Int. Ed. 62, e202301481 (2023).

    CAS  Google Scholar 

  42. Wu, S. et al. Urea group-directed organocatalytic asymmetric versatile dihalogenation of alkenes and alkynes. Nat. Catal. 4, 692–702 (2021).

    CAS  Google Scholar 

  43. Miao, J.-H. et al. Organocatalyst-controlled site-selective arene C–H functionalization. Nat. Chem. 13, 982–991 (2021).

    Google Scholar 

  44. Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    CAS  PubMed  Google Scholar 

  45. Wencel-Delord, J., Panossian, A., Lerouxb, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    CAS  Google Scholar 

  46. Wu, S., Xiang, S.-H., Cheng, J. K. & Tan, B. Axially chiral alkenes: atroposelective synthesis and applications. Tetrahedron Chem. 1, 100009 (2022).

    Google Scholar 

  47. Mori, K., Ohmori, K. & Suzuki, K. Hydrogen-bond control in axially chiral styrenes: selective synthesis of enantiomerically pure C2-symmetric paracyclophanes. Angew. Chem. Int. Ed. 48, 5638–5641 (2009).

    CAS  Google Scholar 

  48. Mori, K., Ohmori, K. & Suzuki, K. Stereochemical relay via axially chiral styrenes: asymmetric synthesis of the antibiotic TAN-1085. Angew. Chem. Int. Ed. 48, 5633–5637 (2009).

    CAS  Google Scholar 

  49. Song, H. et al. Synthesis of axially chiral styrenes through Pd-catalyzed asymmetric C-H olefination enabled by an amino amide transient directing group. Angew. Chem. Int. Ed. 59, 6576–6580 (2020).

    CAS  Google Scholar 

  50. Yang, C. et al. Facile synthesis of axially chiral styrene-type carboxylic acids via palladium-catalyzed asymmetric C-H activation. Chem. Sci. 12, 3726–3732 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, C. et al. Development of axially chiral styrene-type carboxylic acid ligands via palladium-catalyzed asymmetric C-H alkynylation. Org. Lett. 23, 8132–8137 (2021).

    CAS  PubMed  Google Scholar 

  52. Feng, X. & Du, H. Synthesis of chiral olefin ligands and their application in asymmetric catalysis. Asian J. Org. Chem. 1, 204–213 (2012).

    CAS  Google Scholar 

  53. Wang, Y.-B. et al. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nat. Catal. 2, 504–513 (2019).

    CAS  Google Scholar 

  54. Zheng, S.-C. et al. Organocatalytic atroposelective synthesis of axially chiral styrenes. Nat. Commun. 8, 15238 (2017).

    PubMed Central  Google Scholar 

  55. Li, W. et al. Synthesis of axially chiral alkenylboronates through combined copper- and palladium-catalysed atroposelective arylboration of alkynes. Nat. Synth. 2, 140–151 (2023).

    Google Scholar 

  56. Jolliffe, J., Armstrong, R. & Smith, M. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Nat. Chem. 9, 558–562 (2017).

    CAS  PubMed  Google Scholar 

  57. Jin, L. et al. Atroposelective synthesis of axially chiral styrenes via an asymmetric C-H functionalization strategy. Chem 6, 497–511 (2020).

    CAS  Google Scholar 

  58. Ishida, N., Miura, T. & Murakami, M. Stereoselective synthesis of trisubstituted alkenylboranes by palladium-catalysed reaction of alkynyltriarylborates with aryl halides. Chem. Commun. 2007, 4381–4383 (2007).

    Google Scholar 

  59. Kuang, Z. et al. Cu-catalyzed regio- and stereodivergent chemoselective sp2/sp3 1,3- and 1,4-diborylations of CF3-containing 1,3-enynes. Chem 6, 2347–2363 (2020).

    CAS  Google Scholar 

  60. Yang, K., Zhang, G. & Song, Q. Four-coordinate triarylborane synthesis via cascade B-Cl/C-B cross-metathesis and C-H bond borylation. Chem. Sci. 9, 7666–7672 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jin, S., Liu, K., Wang, S. & Song, Q. Enantioselective cobalt-catalyzed cascade hydrosilylation and hydroboration of alkynes to access enantioenriched 1,1-silylboryl alkanes. J. Am. Chem. Soc. 143, 13124–13134 (2021).

    CAS  Google Scholar 

  62. Zhang, G. et al. Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B–H bond insertion reaction. Nat. Commun. 13, 2624–2635 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, C. et al. Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nat. Commun. 13, 1748–1760 (2022).

    Google Scholar 

  64. Fan, Z. et al. Enantioselective copper-catalyzed sp2/sp3 diborylation of 1,1-chloro-trifluoromethyl-2-alkenes. ACS Cent. Sci. 8, 1134–1144 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hong, D., Yang, Y. Y., Wang, Y. G. & Lin, X. F. A Yb(OTf)3/PEG-supported quaternary ammonium salt catalyst system for a three-component Mannich-type reaction in aqueous media. Synlett 7, 1107–1110 (2009).

    Google Scholar 

  66. Ariki, Z. T., Maekawa, Y., Nambo, M. & Crudden, C. M. Preparation of quaternary centers via nickel-catalyzed Suzuki-Miyaura cross-coupling of tertiary sulfones. J. Am. Chem. Soc. 140, 78–81 (2018).

    CAS  PubMed  Google Scholar 

  67. Teng, F. et al. Palladium-catalyzed atroposelective coupling-cyclization of 2 isocyanobenzamides to construct axially chiral 2 aryl- and 2,3-diarylquinazolinones. J. Am. Chem. Soc. 143, 2722–2728 (2021).

    CAS  PubMed  Google Scholar 

  68. Wagner, C. L., Herrera, G., Lin, Q., Hu, C. T. & Diao, T. Redox activity of pyridine-oxazoline ligands in the stabilization of low-valent organonickel radical complexes. J. Am. Chem. Soc. 143, 5295–5300 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ye, M. et al. Arylation of terminal alkynes: transition-metal-free Sonogashira type coupling for the construction of C(sp)-C(sp2) bonds. Org. Lett. 25, 1787–1792 (2023).

    CAS  PubMed  Google Scholar 

  70. Ishida, N., Narumi, M. & Murakami, M. Synthesis of azaaromatic-borane intramolecular complexes by palladium-catalyzed reaction of azaaromatic halides with alkynyltriarylborates. Helv. Chim. Acta 95, 2474–2480 (2012).

    CAS  Google Scholar 

  71. Hu, L. et al. Origin of ligand effects on stereoinversion in Pd-catalyzed synthesis of tetrasubstituted olefins. J. Org. Chem. 86, 18128–18138 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (grants 21931013 and 22271105 to Q.S.) and the Natural Science Foundation of Fujian Province (grant 2022J02009 to Q.S.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Q.S. designed and directed the project. X.M. performed the experiments and developed the reactions. M.T., L.L., Z.Z., P.L. and J.L. helped with the collection of some experimental data. Q.S. and X.M. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Qiuling Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Chuan He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–16, Figs. 1–8 and starting material preparation, experimental procedures, synthetic transformations, mechanistic studies and product characterization.

Supplementary Data 1

Crystallographic data of compound 51, CCDC reference 2243354.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Tan, M., Li, L. et al. Ni-catalysed assembly of axially chiral alkenes from alkynyl tetracoordinate borons via 1,3-metallate shift. Nat. Chem. 16, 42–53 (2024). https://doi.org/10.1038/s41557-023-01396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01396-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing