Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed difluorocarbene transfer enables modular synthesis

Abstract

The use of metal catalysts to produce and control the reactivity of carbenes has long offered a powerful approach to organic synthesis; however, difluorocarbene transfer catalysed by metal is an outlier and remains a substantial challenge. In that context, copper difluorocarbene chemistry has been elusive so far. Here we report the design, synthesis, characterization and reactivity of isolable copper(I) difluorocarbene complexes, which enable the development of a copper-catalysed difluorocarbene transfer reaction. The method offers a strategy for the modular synthesis of organofluorine compounds from simple and readily available components. This strategy facilitates a modular difluoroalkylation by coupling difluorocarbene with two inexpensive feedstocks, silyl enol ethers and allyl/propargyl bromides, in a one-pot reaction via copper catalysis, providing a diversity of difluoromethylene-containing products without laborious multistep synthesis. The approach enables access to various fluorinated skeletons of medicinal interest. Mechanistic and computational studies consistently reveal a mechanism involving nucleophilic addition to an electrophilic copper(I) difluorocarbene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metal-catalysed difluorocarbene transfer.
Fig. 2: Characterization and reactivity investigation of the isolated copper(I) difluorocarbenes.
Fig. 3: Transformations of the resulting CF2-containing products.
Fig. 4: Mechanistic studies.
Fig. 5: Computed free-energy profile for the formation of 3 from D2.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2184819 (B1), 2184822 (D1), 2201058 (50) and 2184826 (58). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Experimental procedures, characterization of new compounds and all other data supporting the findings are available in the Supplementary Information.

References

  1. Hine, J. Carbene Chemistry (Ronald Press, 1964).

  2. Chinoporos, E. Carbenes. Reactive intermediates containing divalent carbon. Chem. Rev. 63, 235–255 (1963).

    CAS  Google Scholar 

  3. Dötz, K. H. Topics in Organometallic Chemistry: Metal Carbenes in Organic Synthesis Vol. 13 (Springer, 2004).

  4. Wang, J.-B., Che, C.-M. & Doyle, M. P. Transition Metal-Catalyzed Carbene Transformations (Wiley, 2022).

  5. Zhang, L., DeMuynck, B. M., Paneque, A. N., Rutherford, J. E. & Nagib, D. A. Carbene reactivity from alkyl and aldehydes. Science 377, 649–654 (2022).

    CAS  PubMed  Google Scholar 

  6. Brothers, P. J. & Roper, W. R. Transition-metal dihalocarbene complexes. Chem. Rev. 88, 1293–1326 (1988).

    CAS  Google Scholar 

  7. Zhou, W. et al. Transition-metal difluorocarbene complexes. Chem. Commun. 57, 9316–9329 (2021).

    CAS  Google Scholar 

  8. Reger, D. L. & Dukes, M. D. Molybdenum perfluorocarbene complexes. J. Organomet. Chem. 153, 67–72 (1978).

    CAS  Google Scholar 

  9. Takahira, Y. & Morizawa, Y. Ruthenium-catalyzed olefin cross-metathesis with tetrafluoroethylene and analogous fluoroolefins. J. Am. Chem. Soc. 137, 7031–7034 (2015).

    CAS  PubMed  Google Scholar 

  10. Feng, Z., Min, Q.-Q. & Zhang, X. Access to difluoromethylated arenes by Pd-catalyzed reaction of arylboronic acids with bromodifluoroacetate. Org. Lett. 18, 44–47 (2016).

    CAS  PubMed  Google Scholar 

  11. Feng, Z., Min, Q.-Q., Fu, X.-P., An, L. & Zhang, X. Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium. Nat. Chem. 9, 918–923 (2017).

    CAS  PubMed  Google Scholar 

  12. Fu, X.-P. et al. Controllable catalytic difluorocarbene transfer enables access to diversified fluoroalkylated arenes. Nat. Chem. 11, 948–956 (2019).

    CAS  PubMed  Google Scholar 

  13. Zhang, X.-Y., Fu, X.-P., Zhang, S. & Zhang, X. Palladium difluorocarbene involved catalytic coupling with terminal alkynes. CCS Chem. 2, 293–304 (2020).

    CAS  Google Scholar 

  14. Deng, X.-Y., Lin, J.-H. & Xiao, J.-C. Pd-catalyzed transfer of difluorocarbene. Org. Lett. 18, 4384–4387 (2016).

    CAS  PubMed  Google Scholar 

  15. Sap, J. B. I. et al. [18F]Difluorocarbene for positron emission tomography. Nature 606, 102–108 (2022).

    CAS  PubMed  Google Scholar 

  16. Wiemers, D. M. & Burton, D. J. Pregeneration, spectroscopic detection and chemical reactivity of (trifluoromethyl) copper, an elusive and complex species. J. Am. Chem. Soc. 108, 832–834 (1986).

    CAS  Google Scholar 

  17. Yang, Z.-Y., Wiemers, D. M. & Burton, D. J. Trifluoromethylcopper: a useful difluoromethylene transfer reagent: a novel double insertion of difluoromethylene into pentafluorophenylcopper. J. Am. Chem. Soc. 114, 4402–4403 (1992).

    CAS  Google Scholar 

  18. Su, D.-B., Duan, J.-X., Yu, A.-J. & Chen, Q.-Y. Synthesis of functionalized long-chain perfluoroalkanes from methyl halodifluoroacetates: a process of difluorocarbene insertion into copper-carbon bonds. J. Fluor. Chem. 65, 11–14 (1993).

    CAS  Google Scholar 

  19. Fuchibe, K., Aono, T., Hu, J. & Ichikawa, J. Copper(I)-catalyzed [4 + 1] cycloaddition of silyl dienol ethers with sodium bromodifluoroacetate: access to β,β-difluorocyclopentanone derivatives. Org. Lett. 18, 4502–4505 (2016).

    CAS  PubMed  Google Scholar 

  20. Kirmse, W. Copper carbene complexes: advanced catalysts, new insights. Angew. Chem. Int. Ed. 42, 1088–1093 (2003).

    CAS  Google Scholar 

  21. Wolfe, M. M. W., Shanahan, J. P., Kampf, J. W. & Szymczak, N. K. Defluorinative functionalization of Pd(II) fluoroalkyl complexes. J. Am. Chem. Soc. 142, 18698–18705 (2020).

    Google Scholar 

  22. Evano, G. & Blanchard, N. Copper-Mediated Cross-Coupling Reactions (Wiley, 2014).

  23. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    PubMed  Google Scholar 

  24. Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51, 4359–4369 (2008).

    CAS  PubMed  Google Scholar 

  25. Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61, 5822–5880 (2018).

    CAS  PubMed  Google Scholar 

  26. O’Hagan, D., Wang, Y., Skibinski, M. & Slawin, A. M. Z. Influence of the difluoromethylene group (CF2) on the conformation and properties of selected organic compounds. Pure Appl. Chem. 84, 1587–1595 (2012).

    Google Scholar 

  27. Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tomashenko, O. A. & Grushin, V. V. Aromatic trifluoromethylation with metal complexes. Chem. Rev. 111, 4475–4521 (2011).

    CAS  PubMed  Google Scholar 

  29. Yang, X., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di- and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 115, 826–870 (2015).

    CAS  PubMed  Google Scholar 

  30. Zhang, F., Xiao, Y.-L. & Zhang, X. Transition-metal (Cu, Pd, Ni)-catalyzed difluoroalkylation via cross-coupling with difluoroalkyl halides. Acc. Chem. Res. 51, 2264–2278 (2018).

    PubMed  Google Scholar 

  31. Zemtsov, A. A., Kondratyev, N. S., Levin, V. V., Struchkova, M. I. & Dilman, A. D. Copper-catalyzed allylation of α,α-difluoro-substituted organozinc reagents. J. Org. Chem. 79, 818–822 (2014).

    CAS  PubMed  Google Scholar 

  32. An, L., Xu, C. & Zhang, X. Highly selective nickel-catalyzed gem-difluoropropargylation of unactivated alkylzinc reagents. Nat. Commun. 8, 1460–1468 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Hughes, R. P. et al. A simple route to difluorocarbene and perfluoroalkylidene complexes of iridium. J. Am. Chem. Soc. 127, 15020–15021 (2005).

    CAS  PubMed  Google Scholar 

  34. Harrison, D. J., Gorelsky, S. I., Lee, G. M., Korobkov, I. & Baker, R. T. Cobalt fluorocarbene complexes. Organometallics 32, 12–15 (2013).

    CAS  Google Scholar 

  35. Dubinina, G. G., Furutachi, H. & Vicic, D. A. Active trifluoromethylating agents from well-defined copper(I)-CF3 complexes. J. Am. Chem. Soc. 130, 8600–8601 (2008).

    CAS  PubMed  Google Scholar 

  36. Ziegler, M. S., Levine, D. S., Lakshmi, K. V. & Tilley, T. D. Aryl group transfer from tetraarylborato anions to an electrophilic dicopper(I) center and mixed-valence μ‑aryl dicopper(I,II) complexes. J. Am. Chem. Soc. 138, 6484–6491 (2016).

    CAS  PubMed  Google Scholar 

  37. Li, L., Wang, F., Ni, C. & Hu, J. Synthesis of gem-difluorocyclopropa(e)nes and O-, S-, N- and P-difluoromethylated compounds with TMSCF2Br. Angew. Chem. Int. Ed. 52, 12390–12394 (2013).

    CAS  Google Scholar 

  38. Badiei, Y. M. & Warren, T. H. Electronic structure and electrophilic reactivity of discrete copper diphenylcarbenes. J. Organomet. Chem. 690, 5989–6000 (2005).

    CAS  Google Scholar 

  39. Bour, J. R., Kariofillis, S. K. & Sanford, M. S. Synthesis, reactivity and catalytic applications of isolable (NHC)Cu(CHF2) complexes. Organometallics 36, 1220–1223 (2017).

    CAS  Google Scholar 

  40. Matsuo, T. et al. Synthesis and structures of a series of bulky ‘Rind-Br’ based on a rigid fused-ring s-hydrindacene skeleton. Bull. Chem. Soc. Jpn 84, 1178–1191 (2011).

    CAS  Google Scholar 

  41. Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138–1143 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, D. & Caulton, K. G. New entries to and new reactions of fluorocarbon ligands. J. Am. Chem. Soc. 119, 3185–3186 (1997).

    CAS  Google Scholar 

  43. Wang, F. et al. Synthesis of gem-difluorinated cyclopropanes and cyclopropenes: trifluoromethyltrimethylsilane as a difluorocarbene source. Angew. Chem. Int. Ed. 50, 7153–7157 (2011).

    CAS  Google Scholar 

  44. García-Domínguez, A. et al. Difluorocarbene generation from TMSCF3: kinetics and mechanism of NaI-mediated and Si-induced anionic chain reactions. J. Am. Chem. Soc. 142, 14649–14663 (2020).

    PubMed  Google Scholar 

  45. Tarantino, K. T., Liu, P. & Knowles, R. R. Catalytic ketyl-olefin cyclizations enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 135, 10022–10025 (2013).

    CAS  PubMed  Google Scholar 

  46. Leclerc, M. C. et al. Perfluoroalkyl cobalt(III) fluoride and bis(perfluoroalkyl) complexes: catalytic fluorination and selective difluorocarbene formation. J. Am. Chem. Soc. 137, 16064–16073 (2015).

    CAS  PubMed  Google Scholar 

  47. Fernández, I., Cossío, F. P. & Sierra, M. A. Dyotropic reactions: mechanisms and synthetic applications. Chem. Rev. 109, 6687–6711 (2009).

    PubMed  Google Scholar 

  48. Dolbier, W. R. Jr & Battiste, M. A. Structure, synthesis and chemical reactions of fluorinated cyclopropanes and cyclopropenes. Chem. Rev. 103, 1071–1098 (2003).

    CAS  PubMed  Google Scholar 

  49. Yakovenko, A. A., Timofeeva, T. V. & Antipin, Yu. M. Synthesis and crystal structure of the salt [PPN+]2[Cu2I2Cl2]2−. J. Chem. Crystallogr. 37, 645–649 (2007).

    CAS  Google Scholar 

  50. Finkelstein, H. Darstellung organischer Jodide aus den entsprechenden Bromiden und Chloriden. Chem. Ber. 43, 1528–1532 (1910).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21931013 to X.Zhang, 22193072 to X.Zhang, 22122104 to X.-S.X. and 21933004 to X.-S.X.), the National Key R&D Program of China 2021YFF0701700 to X.-S.X. and Q.-Q.M., and the Science and Technology Committee of Shanghai Municipality (21XD1404400 to X.Zhang and 22JC1403500 to X.Zhang). We thank X. Leng and J. Sun at SIOC for the X-ray crystal structure analysis, K.N. Houk at the University of California, Los Angeles, D. O’Hagan at the University of St Andrews, and Y. Xu at the Tongji University for reviewing and editing the paper.

Author information

Authors and Affiliations

Authors

Contributions

X.Zhang and X.Zeng conceived the research concept. X.Zhang directed the project. X.Zeng conducted the experiments. Q.-Q.M. conducted large-scale reactions. Y.L. and X.-S.X. conducted the DFT calculations. X.Zhang wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Xiao-Song Xue or Xingang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks R. Baker and Wei Liu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–28, Tables 1–23, copies of NMR spectra and references.

Supplementary Data 1

Crystallographic data for complex B1; CCDC reference 2184819

Supplementary Data 2

Crystallographic data for complex D1; CCDC reference 2184822

Supplementary Data 3

Crystallographic data for compound 50; CCDC reference 2201058

Supplementary Data 4

Crystallographic data for compound 58; CCDC reference 2184826

Supplementary Data 5

Computational data for DFT calculations

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Li, Y., Min, QQ. et al. Copper-catalysed difluorocarbene transfer enables modular synthesis. Nat. Chem. 15, 1064–1073 (2023). https://doi.org/10.1038/s41557-023-01236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01236-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing