Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface-exposed silver nanoclusters inside molecular metal oxide cavities

Abstract

The surfaces of metal nanoclusters, including their interface with metal oxides, exhibit a high reactivity that is attractive for practical purposes. This high reactivity, however, has also hindered the synthesis of structurally well-defined hybrids of metal nanoclusters and metal oxides with exposed surfaces and/or interfaces. Here we report the sequential synthesis of structurally well-defined {Ag30} nanoclusters in the cavity of ring-shaped molecular metal oxides known as polyoxometalates. The {Ag30} nanoclusters possess exposed silver surfaces yet are stabilized both in solution and the solid state by the surrounding ring-shaped polyoxometalate species. The clusters underwent a redox-induced structural transformation without undesirable agglomeration or decomposition. Furthermore, {Ag30} nanoclusters showed high catalytic activity for the selective reduction of several organic functional groups using H2 under mild reaction conditions. We believe that these findings will serve for the discrete synthesis of surface-exposed metal nanoclusters stabilized by molecular metal oxides, which may in turn find applications in, for example, the fields of catalysis and energy conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the synthesis of silver nanoclusters possessing exposed surfaces and interfaces with metal oxide cavities.
Fig. 2: Molecular structures and electronic states of {Ag16}16+ and {Ag30}22+ nanoclusters within ring-shaped POM cavities (Ag16 and Ag30).
Fig. 3: Molecular structure and electronic state of {Ag30}16+ nanocluster within the ring-shaped POM cavity (Ag30′).
Fig. 4: Structure transformation and catalytic application of {Ag30} nanocluster using H2.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2103710 (Ag16), 2103711 (Ag30) and 2103712 (Ag30′). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other spectroscopic and crystallographic data are included in the Supplementary Information. Source data are provided with this paper.

References

  1. Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Luo, G.-G. et al. New protective ligands for atomically precise silver nanoclusters. Dalton Trans. 49, 5406–5415 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto, K., Imaoka, T., Tanabe, M. & Kambe, T. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev. 120, 1397–1437 (2019).

    Article  PubMed  Google Scholar 

  5. Takano, S. & Tsukuda, T. Chemically modified gold/silver superatoms as artificial elements at nanoscale: design principles and synthesis challenges. J. Am. Chem. Soc. 143, 1683–1698 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Du, Y., Sheng, H., Astruc, D. & Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Nie, X., Qian, H., Ge, Q., Xu, H. & Jin, R. CO oxidation catalyzed by oxide-supported Au25(SR)18 nanoclusters and identification of perimeter sites as active centers. ACS Nano 6, 6014–6022 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Li, G. & Jin, R. Gold nanocluster-catalyzed semihydrogenation: a unique activation pathway for terminal alkynes. J. Am. Chem. Soc. 136, 11347–11354 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S. et al. Total structure determination of surface doping [Ag46Au24(SR)32](BPh4)2 nanocluster and its structure-related catalytic property. Sci. Adv. 1, e1500441 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang, H. et al. Ligand-stabilized Au13Cux (x = 2, 4, 8) bimetallic nanoclusters: ligand engineering to control the exposure of metal sites. J. Am. Chem. Soc. 135, 9568–9571 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Yuan, S.-F., Lei, Z., Guan, Z.-J. & Wang, Q.-M. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem. Int. Ed. 60, 5225–5229 (2021).

    Article  CAS  Google Scholar 

  12. Dong, X.-Y., Gao, Z.-W., Yang, K.-F., Zhang, W.-Q. & Xu, L.-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol. 5, 2554–2574 (2015).

    Article  CAS  Google Scholar 

  13. Mitsudome, T. et al. Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. Angew. Chem. Int. Ed. 47, 138–141 (2008).

    Article  CAS  Google Scholar 

  14. Shimizu, K., Ohshima, K. & Satsuma, A. Direct dehydrogenative amide synthesis from alcohols and amines catalyzed by γ-alumina supported silver cluster. Chemistry 12, 9977–9980 (2009).

    Article  Google Scholar 

  15. Desireddy, A. et al. Ultrastable silver nanoparticles. Nature 501, 399–402 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, H. et al. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 4, 2422 (2013).

    Article  PubMed  Google Scholar 

  17. Sun, D., Luo, G.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. Simultaneous self-assembly of a cage-like silver(I) complex encapsulating an Ag6 neutral cluster core and carbon dioxide fixation. Chem. Commun. 47, 1461–1463 (2011).

    Article  CAS  Google Scholar 

  18. Joshi, C. P., Bootharaju, M. S., Alhilaly, M. J. & Bakr, O. M. [Ag25(SR)18]: the ‘golden’ silver nanoparticle. J. Am. Chem. Soc. 137, 11578–11581 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Dhayal, R. S. et al. [Ag21{S2P(OiPr)2}12]+: an eight-electron superatom. Angew. Chem. Int. Ed. 54, 3702–3706 (2015).

    Article  CAS  Google Scholar 

  20. Qin, L. et al. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem. Int. Ed. 60, 26136–26141 (2021).

    Article  CAS  Google Scholar 

  21. Pope, M. T. Heteropoly and Isopoly Oxometalates (Springer, 1983).

  22. Sadakane, M. & Steckhan, E. Electrochemical properties of polyoxometalates as electrocatalysts. Chem. Rev. 98, 219–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Lv, H. et al. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Miras, H. N., Yan, J., Long, D.-L. & Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 41, 7403–7430 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Weinstock, I. A., Schreiber, R. E. & Neumann, R. Dioxygen in polyoxometalate mediated reactions. Chem. Rev. 118, 2680–2717 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Lechner, M., Güttel, R. & Streb, C. Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design. Dalton Trans. 45, 16716–16726 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Izarova, N. V., Pope, M. T. & Kortz, U. Noble metals in polyoxometalates. Angew. Chem. Int. Ed. 51, 9492–9510 (2012).

    Article  CAS  Google Scholar 

  28. Oms, O., Dolbecq, A. & Mialane, P. Diversity in structures and properties of 3d-incorporating polyoxotungstates. Chem. Soc. Rev. 41, 7497–7536 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, S.-T. & Yang, G.-Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 41, 7623–7646 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki, K. et al. Three-dimensional ordered arrays of 58 × 58 × 58 Å3 hollow frameworks in ionic crystals of M2Zn2-substituted polyoxometalates. Angew. Chem. Int. Ed. 51, 1597–1601 (2012).

    Article  CAS  Google Scholar 

  31. Minato, T. et al. Robotic stepwise synthesis of hetero-multinuclear metal oxo clusters as single-molecule magnets. J. Am. Chem. Soc. 143, 12809–12816 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Y. & Weinstock, I. Polyoxometalate-decorated nanoparticles. Chem. Soc. Rev. 41, 7479–7496 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Xia, K., Yamaguchi, K. & Suzuki, K. Recent advances in hybrid materials of metal nanoparticles and polyoxometalates. Angew. Chem. Int. Ed. 62, e202214506 (2022).

    Google Scholar 

  34. Kikukawa, Y. et al. A discrete octahedrally shaped [Ag6]4+ cluster encapsulated within silicotungstate ligands. Chem. Commun. 49, 376–378 (2013).

    Article  CAS  Google Scholar 

  35. Yonesato, K. et al. Controlled assembly synthesis of atomically precise ultrastable silver nanoclusters with polyoxometalates. J. Am. Chem. Soc. 141, 19550–19554 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Yonesato, K., Ito, H., Yokogawa, D., Yamaguchi, K. & Suzuki, K. An ultrastable, small {Ag7}5+ nanocluster within a triangular hollow polyoxometalate framework. Angew. Chem. Int. Ed. 59, 16361–16365 (2020).

    Article  CAS  Google Scholar 

  37. Yonesato, K., Yamazoe, S., Yokogawa, D., Yamaguchi, K. & Suzuki, K. A molecular hybrid of an atomically precise silver nanocluster and polyoxometalates for H2 cleavage into protons and electrons. Angew. Chem. Int. Ed. 60, 16994–16998 (2021).

    Article  CAS  Google Scholar 

  38. Contant, R. & Tézé, A. A new crown heteropolyanion K28Li5H7P8W48O184·92H2O: synthesis, structure, and properties. Inorg. Chem. 24, 4610–4614 (1985).

    Article  CAS  Google Scholar 

  39. Mal, S. S. & Kortz, U. The wheel-shaped Cu20 tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25− ion. Angew. Chem. Int. Ed. 44, 3777–3780 (2005).

    Article  CAS  Google Scholar 

  40. Müller, A. et al. Metal-oxide-based nucleation process under confined conditions: two mixed-valence V6-type aggregates closing the W48 wheel-type cluster cavities. Angew. Chem. Int. Ed. 46, 4477–4480 (2007).

    Article  Google Scholar 

  41. Pichon, C. et al. Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates. Inorg. Chem. 46, 5292–5301 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Mal, S. S. et al. Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster. Chemistry 14, 1186–1195 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell, S. G. et al. Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nat. Chem. 2, 308–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Boyd, T. et al. POMzites: A family of zeolitic polyoxometalate frameworks from a minimal building block library. J. Am. Chem. Soc. 139, 5930–5938 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, P., Alsufyani, M., Emwas, A.-H., Chen, C. & Khashab, N. M. Lewis acid guests in a {P8W48} archetypal polyoxotungstate host: enhanced proton conductivity via metal-oxo cluster within cluster assemblies. Angew. Chem. Int. Ed. 57, 13046–13051 (2018).

    Article  CAS  Google Scholar 

  46. Sasaki, S., Yonesato, K., Mizuno, N., Yamaguchi, K. & Suzuki, K. Ring-shaped polyoxometalates possessing multiple 3d metal cation sites: [{M2(OH2)2}2{M(OH2)2}4P8W48O176(OCH3)8]16– (M = Mn, Co, Ni, Cu, Zn). Inorg. Chem. 58, 7722–7729 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Schön, G. et al. ESCA studies of Ag, Ag2O and AgO. Acta Chem. Scand. 27, 2623–2633 (1973).

    Article  Google Scholar 

  48. Zhan, C.-H., Zheng, Q., Long, D.-L., Vilà-Nadal, L. & Cronin, L. Controlling the reactivity of the [P8W48O184]40− inorganic ring and its assembly into POMzite inorganic frameworks with silver ions. Angew. Chem. Int. Ed. 58, 17282–17286 (2019).

    Article  CAS  Google Scholar 

  49. Chen, S., Fang, W.-H., Zhang, L. & Zhang, J. Atomically precise multimetallic semiconductive nanoclusters with optical limiting effects. Angew. Chem. Int. Ed. 57, 11252–11256 (2018).

    Article  CAS  Google Scholar 

  50. Fan, X. et al. Threefold collaborative stabilization of Ag14-nanorods by hydrophobic Ti16-oxo clusters and alkynes: designable assembly and solid-state optical-limiting application. Angew. Chem. Int. Ed. 60, 12949–12954 (2021).

    Article  CAS  Google Scholar 

  51. Asakura, H. et al. xTunes: a new XAS processing tool for detailed and on-the-fly analysis. Radiat. Phys. Chem. 175, 108270 (2020).

    Article  CAS  Google Scholar 

  52. Ankudinov, A. L., Ravel, B., Rehr, J. J. & Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from JST PRESTO (JPMJPR18T7, JPMJPR19T9), JST FOREST (JPMJFR213M), JSPS KAKENHI (20H02749, 20H04659), and the JSPS Core-to-Core program, the Noguchi Institute and the Toray Science Foundation. Some of the computations were performed using the Research Center for Computational Science, Okazaki, Japan. XAFS measurements at SPring-8 were conducted with the approval of the Japan Synchrotron Radiation Research Institute (proposal numbers 2020A1219, 2021A1272, 2022A1627). Single-crystal X-ray diffraction measurements at SPring-8 were conducted with the approval of the Japan Synchrotron Radiation Research Institute (proposal numbers 2021A1034, 2022A1111, 2022B1605). We thank S. Kikkawa (Tokyo Metropolitan University) for help with XAFS measurements at SPring-8. We thank T. Kojima (Osaka University) for help with single-crystal X-ray diffraction measurements at SPring-8.

Author information

Authors and Affiliations

Authors

Contributions

K.S. conceived and designed the project. K.S. and K.Ya supervised the project. K.Yo. performed the major parts of synthesis and characterization of compounds. K.Yo. and T.K. performed crystallographic analysis. S.Y., K.Yo. and K.S. performed XAFS studies. D.Yo. and K.S. performed DFT studies. D.Ya. and K.S. performed catalytic studies.

Corresponding authors

Correspondence to Kazuya Yamaguchi or Kosuke Suzuki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Lei Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–10, Figs. 1–26 and Notes 1–5.

Supplementary Data 1

Crystallographic data of Ag16.

Supplementary Data 2

Crystallographic data of Ag30.

Supplementary Data 3

Crystallographic data of Ag30′.

Supplementary Data 4

Source data for Supplementary Figs. 8 and 17, titration experiments.

Source data

Source Data Fig. 2

Observed and fitting data for XPS.

Source Data Fig. 3

Observed and fitting data for XPS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonesato, K., Yanai, D., Yamazoe, S. et al. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat. Chem. 15, 940–947 (2023). https://doi.org/10.1038/s41557-023-01234-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01234-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing