Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emulsion-oriented assembly for Janus double-spherical mesoporous nanoparticles as biological logic gates

Abstract

The ability of Janus nanoparticles to establish biological logic systems has been widely exploited, yet conventional non/uni-porous Janus nanoparticles are unable to fully mimic biological communications. Here we demonstrate an emulsion-oriented assembly approach for the fabrication of highly uniform Janus double-spherical MSN&mPDA (MSN, mesoporous silica nanoparticle; mPDA, mesoporous polydopamine) nanoparticles. The delicate Janus nanoparticle possesses a spherical MSN with a diameter of ~150 nm and an mPDA hemisphere with a diameter of ~120 nm. In addition, the mesopore size in the MSN compartment is tunable from ~3 to ~25 nm, while those in the mPDA compartments range from ~5 to ~50 nm. Due to the different chemical properties and mesopore sizes in the two compartments, we achieve selective loading of guests in different compartments, and successfully establish single-particle-level biological logic gates. The dual-mesoporous structure enables consecutive valve-opening and matter-releasing reactions within one single nanoparticle, facilitating the design of single-particle-level logic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the synthesis process and biological logic gates of the Janus mesoporous nanoparticles MSN&mPDA.
Fig. 2: Emulsion-oriented assembly of the Janus mesoporous nanoparticles MSN&mPDA.
Fig. 3: Mechanism of the emulsion-oriented assembly process.
Fig. 4: Janus double-spherical MSN&mPDA nanoparticles with tunable large mesopores.
Fig. 5: Schematic of selective loading based on the size and surface property of the mesopores.
Fig. 6: Janus mesoporous double-spherical nanoparticles-based biological logic gates.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the Article and the associated Supplementary Information. Source data are provided with this paper.

References

  1. Ryoo, R. Birth of a class of nanomaterial. Nature 575, 40–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Joo, S. et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Parlett, C. M. et al. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nat. Mater. 15, 178–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Li, W., Liu, J. & Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).

    Article  CAS  Google Scholar 

  5. Lan, K. et al. Precisely designed mesoscopic titania for high-volumetric-density pseudocapacitance. J. Am. Chem. Soc. 143, 14097–14105 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Zu, L. et al. Mesoporous materials for electrochemical energy storage and conversion. Adv. Energy Mater. 10, 2002152 (2021).

    Article  Google Scholar 

  7. Wang, C. et al. Molecular design strategy for ordered mesoporous stoichiometric metal oxide. Angew. Chem. Int. Ed. 58, 15863–15868 (2019).

    Article  CAS  Google Scholar 

  8. Li, Z., Barnes, J., Bosoy, A., Stoddart, J. & Zink, J. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, W., Glackin, C. A., Horwitz, M. A. & Zink, J. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc. Chem. Res. 52, 1531–1542 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Y. & Shi, J. Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks. Adv. Mater. 28, 3235–3272 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, J., Liu, T., Pan, J., Liu, S. & Lu, G. Advances in multicompartment mesoporous silica micro/nanoparticles for theranostic applications. Annu. Rev. Chem. Biomol. 9, 389–411 (2018).

    Article  CAS  Google Scholar 

  12. Nguyen, T. L., Choi, Y. & Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 31, e1803953 (2019).

    Article  PubMed  Google Scholar 

  13. Qiu, P., Ma, B., Hung, C. T., Li, W. & Zhao, D. Y. Spherical mesoporous materials from single to multilevel architectures. Acc. Chem. Res. 52, 2928–2938 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, T. C., Elzatahry, A., Li, X. M. & Zhao, D. Y. Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 4, 775–791 (2019).

    Article  CAS  Google Scholar 

  15. Li, W., Yue, Q., Deng, Y. & Zhao, D. Ordered mesoporous materials based on interfacial assembly and engineering. Adv. Mater. 25, 5129–5152 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, T. C. et al. Interfacial assembly directed unique mesoporous architectures: from symmetric to asymmetric. Acc. Mater. Res. 1, 100–114 (2020).

    Article  CAS  Google Scholar 

  17. Chen, C., Xie, L. & Wang, Y. Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Res. 12, 1267–1278 (2019).

    Article  CAS  Google Scholar 

  18. Wu, Z. et al. Janus nanoarchitectures: from structural design to catalytic applications. Nano Today 22, 62–82 (2018).

    Article  CAS  Google Scholar 

  19. Zhao, T. C. et al. Surface confined winding assembly of mesoporous nanorods. J. Am. Chem. Soc. 142, 20359–20367 (2020).

    Article  CAS  Google Scholar 

  20. Li, X. et al. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 136, 15086–15092 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, T. et al. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat. Commun. 10, 4387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, W. et al. Engine-trailer-structured nanotrucks for efficient nano-bio interactions and bioimaging-guided drug delivery. Chem 6, 1097–1112 (2020).

    Article  CAS  Google Scholar 

  23. Li, X. et al. Degradation-restructuring induced anisotropic epitaxial growth for fabrication of asymmetric diblock and triblock mesoporous nanocomposites. Adv. Mater. 29, 1701652 (2017).

    Article  Google Scholar 

  24. Yang, T. et al. Dumbbell-shaped bi-component mesoporous Janus solid nanoparticles for biphasic interface catalysis. Angew. Chem. Int. Ed. 56, 8459–8463 (2017).

    Article  CAS  Google Scholar 

  25. Zhao, T. et al. Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 140, 10009–10015 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, P. H. et al. A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat. Chem. 12, 381–390 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D. & Arkin, A. P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl Acad. Sci. USA 108, 8617–8622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Win, M. N. & Smolke, C. D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strack, G., Ornatska, M., Pita, M. & Katz, E. Biocomputing security system: concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc. 130, 4234–4235 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda, M. et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat. Chem. 6, 511–518 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Wen, J. et al. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev. 46, 6024–6045 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Park, J. S. et al. Disparate downstream reactions mediated by an ionically controlled supramolecular tristate switch. J. Am. Chem. Soc. 140, 7598–7604 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Karimi, M. et al. Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc. 139, 4584–4610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seo, J. et al. Nano-bio-computing lipid nanotablet. Sci. Adv. 5, eaau2124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lius, B. et al. Engineering chemical communication between micro/nanosystems. Chem. Soc. Rev. 16, 8829–8856 (2021).

    Google Scholar 

  37. Diez, P. et al. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Llopis-Lorente, A. et al. Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat. Commun. 8, 15511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lius, B. et al. An interactive model of communication between abiotic nanodevices and microorganisms. Angew. Chem. Int. Ed. 58, 14986–14990 (2019).

    Article  Google Scholar 

  40. Llopis-Lorente, A. et al. Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chem. Commun. 55, 13164–13167 (2019).

    Article  CAS  Google Scholar 

  41. Shen, D. et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 14, 923–932 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Niu, D., Ma, Z., Li, Y. & Shi, J. Synthesis of core–shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc. 132, 15144–15147 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Wei, J., Yue, Q., Sun, Z., Deng, Y. & Zhao, D. Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. Angew. Chem. Int. Ed. 51, 6149–6153 (2012).

    Article  CAS  Google Scholar 

  44. Guan, B. Y., Zhang, S. L. & Lou, X. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 57, 6176–6180 (2018).

    Article  CAS  Google Scholar 

  45. Chen, G. et al. General formation of macro-/mesoporous nanoshells from interfacial assembly of irregular mesostructured nanounits. Angew. Chem. Int. Ed. 59, 19663–19668 (2020).

    Article  CAS  Google Scholar 

  46. Peng, L. et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 141, 7073–7080 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Vallet-Regi, M., Rámila, A., del Real, R. P. & Pérez-Pariente, J. A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308–311 (2001).

    Article  CAS  Google Scholar 

  48. Liu, Q., Yu, B., Ye, W. & Zhou, F. Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol. Biosci. 11, 1227–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, B., Liu, J., Liu, S. & Zhou, F. Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem. Commun. 46, 5900–5902 (2010).

    Article  CAS  Google Scholar 

  50. Huo, M., Wang, L., Chen, Y. & Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Du, L., Liao, S., Khatib, H. A., Stoddart, J. F. & Zink, J. I. Controlled-access hollow mechanized silica nanocontainers. J. Am. Chem. Soc. 131, 15136–15142 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Coll, C., Bernardos, A., Martinez-Manez, R. & Sancenon, F. Gated silica mesoporous supports for controlled release and signaling applications. Acc. Chem. Res. 46, 339–349 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank J. Ning and Z. He for their help with sample observations. The work was supported by the National Key R&D Program of China (2018YFA0209401, D.Z.), the National Natural Science Foundation of China (22075049, X.L.; 21875043, X.L.; 22088101, D.Z.; 21701027, X.L.; 21733003, D.Z.; 51961145403, X.L.), the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (22JC1410200, D.Z.), the Natural Science Foundation of Shanghai (22ZR1478900, X.L.; 18ZR1404600, X.L.), the Shanghai Pilot Program for Basic Research-Fudan University (22TQ004, X.L.), the Fundamental Research Funds for the Central Universities (20720220010, X.L.), the Shanghai Rising-Star Program (20QA1401200, X.L.; 22YF1402200, T.Z.) and NPRP grant NPRP12S-0309-190268 from the Qatar National Research Fund (X.L. and A.E.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.Z., X.L. and T.Z. contributed to the conception and design of the experiments, analysis of the data and writing of the manuscript. L.C., M.L., R.L., W.C., C.H., S.W., L.D., A.E., F.Z. and X.L. assisted T.Z. in the synthesis of materials and data collection and analysis. All authors contributed to discussions and manuscript preparation.

Corresponding authors

Correspondence to Xiaomin Li or Dongyuan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jian Liu, Ramon Martínez-Máñez and Hengquan Yang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figs. 1–44 and references 1–7.

Source data

Source Data Fig. 2f

Statistical source data for Fig. 2f.

Source Data Fig. 6

Statistical source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Chen, L., Liu, M. et al. Emulsion-oriented assembly for Janus double-spherical mesoporous nanoparticles as biological logic gates. Nat. Chem. 15, 832–840 (2023). https://doi.org/10.1038/s41557-023-01183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01183-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing