Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres

Abstract

C(sp3)-rich bicyclic hydrocarbon scaffolds, as exemplified by bicyclo[1.1.1]pentanes, play an increasingly high-profile role as saturated bioisosteres of benzenoids in medicinal chemistry and crop science. Substituted bicyclo[2.1.1]hexanes (BCHs) are emerging bicyclic hydrocarbon bioisosteres for ortho- and meta-substituted benzenes, but are difficult to access. Therefore, a general synthetic route to BCHs is needed if their potential as bioisosteres is to be realized. Here we describe a broadly applicable catalytic approach that delivers substituted BCHs by intermolecular coupling between olefins and bicyclo[1.1.0]butyl (BCB) ketones. The SmI2–catalysed process works for a wide range of electron-deficient alkenes and substituted BCB ketones, operates with SmI2 loadings as low as 5 mol% and is underpinned by a radical relay mechanism that is supported by density functional theory calculations. The product BCH ketones have been shown to be versatile synthetic intermediates through selective downstream manipulation and the expedient synthesis of a saturated hydrocarbon analogue of the broad-spectrum antimicrobial, phthalylsulfathiazole.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Building emerging, hard-to-access BCH bioisosteres using radical relay catalysis.
Fig. 2: Computational study of the SmI2-catalysed alkene insertion.
Fig. 3: Applications of the SmI2-catalysed alkene insertion.

Similar content being viewed by others

Data availability

Materials and methods, experimental procedures, useful information, mechanistic studies, 1H NMR spectra, 13C NMR spectra and mass spectrometry data are available in the Supplementary Information. Crystallographic data for compounds 13s, 13ai, 13aw and 20 have been deposited with the Cambridge Crystallographic Data Centre under accession codes CCDC 2129464, 2129466, 2129467 and 2129468, respectively.

References

  1. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Das, P., Delost, M. D., Qureshi, M. H., Smith, D. T. & Njardarson, J. T. A survey of the structures of US FDA approved combination drugs. J. Med. Chem. 62, 4265–4311 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Nilova, A., Campeau, L.-C., Sherer, E. C. & Stuart, D. R. Analysis of benzenoid substitution patterns in small molecule active pharmaceutical ingredients. J. Med. Chem. 63, 13389–13396 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. McGrath, N. A., Brichacek, M. & Njardarson, J. T. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Ed. 87, 1348–1349 (2010).

    Article  CAS  Google Scholar 

  5. Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Auberson, Y. P. et al. Improving nonspecifc binding and solubility: bicycloalkyl groups and cubanes as para-phenyl bioisosteres. ChemMedChem 12, 590–598 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Mykhailiuk, P. K. Saturated bioisoteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Locke, G. M., Bernhard, S. S. R. & Senge, M. O. Nonconjugated hydrocarbons as rigid-linear motifs: isosteres for material sciences and bioorganic and medicinal chemistry. Chem. Eur. J. 25, 4590–4647 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Reekie, T. A., Williams, C. G., Rendina, L. M. & Kassiou, M. Cubanes in medicinal chemistry. J. Med. Chem. 62, 1078–1095 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Talele, T. T. Opportunities for tapping into three-dimensional chemical space through a quaternary carbon. J. Med. Chem. 63, 13291–13315 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Tse, G. E. et al. Nonclassical phenyl bioisosteres as effective replacements in a series of novel open-source antimalarials. J. Med. Chem. 63, 11585–11601 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Bauer, M. R. et al. Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Med. Chem. 12, 448–471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, N. & Mannhold, R. Bioisosteres in Medicinal Chemistry (Wiley-VCH, 2012).

  16. Pellicciari, R. et al. (S)-(+)-2-(3′-carboxybicyclo[1.1.1]pentyl)-glycine, a structurally new group I metabotropic glutamate receptor antagonist. J. Med. Chem. 39, 2874–2876 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Stepan, A. F. et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J. Med. Chem. 55, 3414–3424 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, J.-X. et al. 1,2-Difunctionalized bicyclo[1.1.1]pentanes: long-sought-after mimetics for ortho/meta-substituted arenes. Proc. Natl Acad. Sci. USA 118, e2108881118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Denisenko, A., Garbuz, P., Shishkina, S. V., Voloshchuk, N. M. & Mykhailiuk, P. K. Saturated bioisosteres of ortho-substituted benzenes. Angew. Chem. Int. Ed. 59, 20515–20521 (2020).

    Article  CAS  Google Scholar 

  21. Levterov, V. V., Panasyuk, Y., Pivnytska, V. O. & Mykhailiuk, P. K. Water-soluble non-classical benzene mimetics. Angew. Chem. Int. Ed. 59, 7161–7167 (2020).

    Article  CAS  Google Scholar 

  22. Kleinmans, R. et al. Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer. Nature 605, 477–482 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Guo, R. et al. Strain-release [2π + 2σ] cycloadditions for the synthesis of bicyclo[2.1.1]hexanes initiated by energy transfer. J. Am. Chem. Soc. 144, 7988–7994 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Corey, E. J. & Zheng, G. Z. Catalytic reactions of samarium (ii) iodide. Tetrahedron Lett. 38, 2045–2048 (1997).

    Article  CAS  Google Scholar 

  25. Huang, H.-M., McDouall, J. J. W. & Procter, D. J. SmI2-catalyzed cyclization cascades by radical relay. Nat. Catal. 2, 211–218 (2019).

    Article  CAS  Google Scholar 

  26. Agasti, S., Beattie, N. A., McDouall, J. J. W. & Procter, D. J. SmI2-catalyzed intermolecular coupling of cyclopropyl ketones and alkynes: a link between ketone conformation and reactivity. J. Am. Chem. Soc. 143, 3655–3661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cairncross, A. & Blanchard, E. P. Jr Bicyclo[1.1.0]butane chemistry. II. Cycloaddition reactions of 3-methylbicyclo[1.1.0]butanecarbonitriles. The formation of bicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 88, 496–504 (1966).

    Article  CAS  Google Scholar 

  28. Gassman, P. G. Thermal addition of carbon–carbon multiple bonds to strained carbocyclics. Acc. Chem. Res. 4, 128–136 (1971).

    Article  CAS  Google Scholar 

  29. De Meijere, A. et al. Cycloadditions of methylenecyclopropanes and strained bicyclo[n.1.0]alkanes to radicophilic olefins. Tetrahedron 42, 1291–1297 (1986).

    Article  Google Scholar 

  30. Wipf, P. & Walczak, M. A. A. Pericyclic cascade reactions of (bicyclo-[1.1.0]butylmethyl)amines. Angew. Chem. Int. Ed. 45, 4172–4175 (2006).

    Article  CAS  Google Scholar 

  31. Huang, H. M., Garduño-Castro, M. H., Morrill, C. & Procter, D. J. Catalytic cascade reactions by radical relay. Chem. Soc. Rev. 48, 4626–4638 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Peter, Á., Agasti, S., Knowles, O., Pye, E. & Procter, D. J. Recent advances in the chemistry of ketyl radicals. Chem. Soc. Rev. 50, 5349–5365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Studer, A. & Curran, D. P. The electron is a catalyst. Nat. Chem. 6, 765–773 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Syroeshkin, M. A. et al. Upconversion of reductants. Angew. Chem. Int. Ed. 58, 5532–5550 (2019).

    Article  CAS  Google Scholar 

  35. Namy, J.-L., Girard, P. & Kagan, H. B. A new preparation of some divalent lanthanide iodides and their usefulness in organic synthesis. Nouv. J. Chim. 1, 5–7 (1977).

    CAS  Google Scholar 

  36. Szostak, M., Fazakerley, N. J., Parmar, D. & Procter, D. J. Cross-coupling reactions using samarium(ii) iodide. Chem. Rev. 114, 5959–6039 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Szostak, M., Sautier, B., Spain, M. & Procter, D. J. Electron transfer reduction of nitriles using SmI2–Et3N–H2O: synthetic utility and mechanism. Org. Lett. 16, 1092–1095 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Engineering and Physical Sciences Research Council (Postdoctoral Research Award to S.A. and F.B.; EP/R029938/1), European Union Horizon 2020 programme (Marie Sklodowska-Curie Individual Fellowship to S.A.; EU project 891623—SmART), Engineering and Physical Sciences Research Council Centre for Doctoral Training in Integrated Catalysis (EP/S023755/1) and University of Manchester (lectureship to G.E.M.C.). We thank the University of Manchester for its Computational Shared Facility and associated support services. We are grateful for the assistance provided via the NMR and mass spectrometry services and thank G. Whitehead and I. J. Vitorica-Yrezabal for assistance with the X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

S.A., G.E.M.C. and D.J.P. conceived of the project. S.A. and F.B. designed and performed the experimental work. E.P. performed the computational studies. N.K. supervised the computational studies. S.A., F.B., G.E.M.C. and D.J.P. contributed to the analysis and interpretation of the data. D.J.P. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to David J. Procter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Schemes 1–7, discussion and Tables 1–5.

Supplementary Data 1

Crystallographic data for compound 13ai (CCDC reference 2129466).

Supplementary Data 2

Crystallographic data for compound 13aw (CCDC reference 2129467).

Supplementary Data 3

Crystallographic data for compound 13s (CCDC reference 2129464).

Supplementary Data 4

Crystallographic data for compound 20 (CCDC reference 2129468).

Supplementary Data 5

Coordinates and energies for 21 and 25 and the structures in Supplementary Tables 4 and 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agasti, S., Beltran, F., Pye, E. et al. A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. Nat. Chem. 15, 535–541 (2023). https://doi.org/10.1038/s41557-023-01135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01135-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing