Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination

Abstract

New approaches are needed to both reduce and reuse plastic waste. In this context, poly(vinyl chloride) (PVC) is an appealing target as it is the least recycled high-production-volume polymer due to its facile release of plasticizers and corrosive HCl gas. Herein, these limitations become advantageous in a paired-electrolysis reaction in which HCl is intentionally generated from PVC to chlorinate arenes in an air- and moisture-tolerant process that is mediated by the plasticizer. The reaction proceeds efficiently with other plastic waste present and a commercial plasticized PVC product (laboratory tubing) can be used directly. A simplified life-cycle assessment reveals that using PVC waste as the chlorine source in the paired-electrolysis reaction has a lower global warming potential than HCl. Overall, this method should inspire other strategies for repurposing waste PVC and related polymers using electrosynthetic reactions, including those that take advantage of existing polymer additives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Paired-electrolysis reaction.
Fig. 2: Electroanalytical data.
Fig. 3: Structural information for PVC47k and dPVCDMP.
Fig. 4: Proposed redox-mediated paired-electrolysis mechanism.
Fig. 5: Evaluating real plastics in the paired-electrolysis reaction.

Similar content being viewed by others

Data availability

A detailed description of the materials, equipment and methods are provided in the Supplementary Information. Furthermore, the Supplementary Information contains full characterization data for small molecules and polymers, electrochemical data, reaction screening results, LCA results and all of the other data collected in this work. When possible, all of the original data are included. In some cases, several hundred raw data files were generated for a single plot, and therefore these results are instead summarized in the tables and figures within the manuscript and its Supplementary Information. Due to the large number of raw data files, they are available from the corresponding author on reasonable request.

References

  1. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  2. Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Science 358, 870–872 (2017).

    Article  CAS  Google Scholar 

  3. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  4. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  5. Advancing Sustainable Materials Management: 2018 Tables and Figures (EPA, accessed 31 August 2021); https://www.epa.gov/sites/default/files/2021-01/documents/2018_tables_and_figures_dec_2020_fnl_508.pdf

  6. Korley, L. T. J., Epps, T. H., Helms, B. A. & Ryan, A. J. Toward polymer upcycling-adding value and tackling circularity. Science 373, 66–69 (2021).

    Article  CAS  Google Scholar 

  7. The New Plastics Economy: Catalyzing Action (Ellen MacArthur Foundation, 2017); https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action

  8. Zhang, Y.-T., Wei, W., Sun, J., Xu, Q. & Ni, B.-J. Long-term effects of polyvinyl chloride microplastics on anaerobic granular sludge for recovering methane from wastewater. Environ. Sci. Technol. 54, 9662–9671 (2020).

    Article  CAS  Google Scholar 

  9. Ribeiro, F. et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ. Sci. Technol. 54, 9408–9417 (2020).

    Article  CAS  Google Scholar 

  10. Lithner, D., Larsson, A. & Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 409, 3309–3324 (2011).

    Article  CAS  Google Scholar 

  11. Rowdhwal, S. S. S. & Chen, J. Toxic effects of di-2-ethylhexyl phthalate: an overview. BioMed Res. Int. 2018, 1750368 (2018).

    Article  Google Scholar 

  12. Pivenko, K., Eriksen, M. K., Martín-Fernández, J. A., Eriksson, E. & Astrup, T. F. Recycling of plastic waste: presence of phthalates in plastics from households and industry. Waste Manage. 54, 44–52 (2016).

    Article  Google Scholar 

  13. Worch, J. C. & Dove, A. P. 100th Anniversary of macromolecular science viewpoint: toward catalytic chemical recycling of waste (and future) plastics. ACS Macro Lett. 9, 1494–1506 (2020).

    Article  CAS  Google Scholar 

  14. Yu, J., Sun, L., Ma, C., Qiao, Y. & Yao, H. Thermal degradation of PVC: a review. Waste Manage. 48, 300–314 (2016).

    Article  CAS  Google Scholar 

  15. Chow, C.-F., Lam, C.-S., Lau, K.-C. & Gong, C.-B. Waste-to-energy: production of fuel gases from plastic wastes. Polymers 13, 3672 (2021).

    Article  CAS  Google Scholar 

  16. Song, Z., Xiu, F. R. & Qi, Y. Degradation and partial oxidation of waste plastic express packaging bags in supercritical water: resources transformation and pollutants removal. J. Hazard. Mater. 423, 127018 (2022).

    Article  CAS  Google Scholar 

  17. Xiu, F. R., Lu, Y. & Qi, Y. DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: a comparative study. Chemosphere 249, 126138 (2020).

    Article  CAS  Google Scholar 

  18. Xiu, F. R. et al. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. Sci. Total Environ. 708, 134532 (2020).

    Article  CAS  Google Scholar 

  19. Lin, R., Amrute, A. P. & Pérez-Ramírez, J. Halogen-mediated conversion of hydrocarbons to commodities. Chem. Rev. 117, 4182–4247 (2017).

    Article  CAS  Google Scholar 

  20. Fauvarque, J. The chlorine industry. Pure Appl. Chem. 68, 1713–1720 (1996).

    Article  CAS  Google Scholar 

  21. Chloro-Alkali Industry Review 2020–2021 (Chlorine Industry Review, accessed 24 May 2022); https://www.chlorineindustryreview.com/

  22. Llorente, M. J., Nguyen, B. H., Kubiak, C. P. & Moeller, K. D. Paired electrolysis in the simultaneous production of synthetic intermediates and substrates. J. Am. Chem. Soc. 138, 15110–15113 (2016).

    Article  CAS  Google Scholar 

  23. Liang, Y., Lin, F., Adeli, Y., Jin, R. & Jiao, N. Efficient electrocatalysis for the preparation of (hetero)aryl chlorides and vinyl chloride with 1,2-dichloroethane. Angew. Chem. Int. Ed. 58, 4566–4570 (2019).

    Article  CAS  Google Scholar 

  24. Dong, X., Roeckl, J. L., Waldvogel, S. R. & Morandi, B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science 371, 507–514 (2021).

    Article  CAS  Google Scholar 

  25. Liu, F., Wu, N. & Cheng, X. Chlorination reaction of aromatic compounds and unsaturated carbon–carbon bonds with chlorine on demand. Org. Lett. 23, 3015–3020 (2021).

    Article  CAS  Google Scholar 

  26. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 334, 179–199 (2018).

    Article  Google Scholar 

  27. Siu, J. C., Fu, N. & Lin, S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).

    Article  CAS  Google Scholar 

  28. Möhle, S. et al. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. 57, 6018–6041 (2018).

    Article  Google Scholar 

  29. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  CAS  Google Scholar 

  30. Shapoval, G. S., Tomilov, A. P., Pud, A. A. & Batsalova, K. V. The electrochemical reductive degradation of PVC. Polym. Sci. 29, 1564–1572 (1987).

    Google Scholar 

  31. Kontsur, Y. V., Shapoval, G. S. & Pud, A. A. Indirect electrochemical dehydrochlorination of polyvinylchloride. J. Macromol. Sci. A 32, 687–693 (1995).

    Article  Google Scholar 

  32. Kontsur, Y. V., Shapoval, G. S. & Pud, A. A. Electrochemical dehydrohalogenation of poly(vinylchloride) in pyridine. Polym. Degrad. Stab. 60, 515–516 (1998).

    Article  CAS  Google Scholar 

  33. Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953).

    Article  CAS  Google Scholar 

  34. Guarrotxena, N., Martínez, G. & Millán, J. Local chain configuration dependence of the mechanisms of analogous reactions of PVC. I. A conclusive study of the microstructure evolution in SN2nucleophilic substitution. J. Polym. Sci. A Polym. Chem. 34, 2387–2397 (1996).

    Article  CAS  Google Scholar 

  35. Francke, R. & Little, D. R. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article  CAS  Google Scholar 

  36. Lauw, S. J. L., Lee, J. H. Q., Tessensohn, M. E., Leong, W. Q. & Webster, R. D. The electrochemical reduction of di-(2-ethylhexyl) phthalate (DEHP) in acetonitrile. J. Electroanal. Chem. 794, 103–111 (2017).

    Article  CAS  Google Scholar 

  37. Andrieux, C. P., Gallardo, I., Savaent, J. M. & Su, K.-B. Dissociative electron transfer. Homogeneous and heterogeneous reductive cleavage of the carbon–halogen bond in simple aliphatic halides. J. Am. Chem. Soc. 108, 638–647 (1986).

    Article  CAS  Google Scholar 

  38. Dahm, C. E. & Peters, D. G. Electrochemical reduction of tetraalkylammonium tetrafluoroborates at carbon cathodes in dimethylformamide. J. Electroanal. Chem. 402, 91–96 (1996).

    Article  Google Scholar 

  39. Skelly, P. W., Li, L. & Braslau, R. Internal plastication of PVC. Polym. Rev. 62, 485–528 (2022).

    Article  CAS  Google Scholar 

  40. Decker, C. Oxidative degradation of poly(vinyl chloride). J. Appl. Polym. Sci. 20, 3321–3336 (1976).

  41. Starnes, W. H. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Prog. Polym. Sci. 27, 2133–2170 (2002).

    Article  CAS  Google Scholar 

  42. Moulay, S. Chemical modification of poly(vinyl chloride)—still on the run. Prog. Polym. Sci. 35, 303–331 (2010).

    Article  CAS  Google Scholar 

  43. Appelbaum, L., Danovich, D., Lazanes, G., Michman, M. & Oron, M. An electrochemical aromatic chlorination, comparison with electrophilic reaction. J. Electroanal. Chem. 499, 39–47 (2001).

    Article  CAS  Google Scholar 

  44. Zhou, Z. et al. Synergy of anodic oxidation and cathodic reduction leads to electrochemical C–H halogenation. Chin. J. Chem. 37, 611–615 (2019).

    Article  CAS  Google Scholar 

  45. Yuan, Y. et al. Electrochemical oxidative clean halogenation using HX/NaX with hydrogen evolution. iScience 12, 293–303 (2019).

    Article  CAS  Google Scholar 

  46. So, Y.-H. Selective chlorination of toluene by anodic oxidation. J. Org. Chem. 50, 5895–5896 (1985).

    Article  CAS  Google Scholar 

  47. Drinking Water and Health: Volume 2 (National Academies, 1980); https://www.ncbi.nlm.nih.gov/books/NBK234591/

  48. Beck, U. & Löser, E. Chlorinated benzenes and other nucleus-chlorinated aromatic hydrocarbons, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, 2011); https://doi.org/10.1002/14356007.o06_o03

  49. http://www.tygons3tubing.com (accessed August 26, 2021).

  50. Environmental Management—Life Cycle Assessment—Principles And Framework (ISO, 2006); https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en

  51. SimaPro 9.1.1 (PRé Sustainability B.V, 2020).

Download references

Acknowledgements

We gratefully acknowledge financial support from the Howard Hughes Medical Institute Professors Program (grant no. 52008144 to A. J. M. to support D. E. F.), the Joint Center for Energy Storage Research (JCESR), a Department of Energy, Energy Innovation Hub (to A. J. M. to support D. K.), and the Agencia Nacional de Investigación e Innovación (ANII) and the Fulbright Commission in Uruguay (to S.I.C.).

Author information

Authors and Affiliations

Authors

Contributions

D.E.F. and A.J.M. conceptualized the research. D.E.F. performed all electrosynthetic experiments, data analysis, created the figures and wrote the original draft. D.K. performed all electroanalytical experiments, contributed to figure creation, data analysis and editing of the paper. The LCA was performed by S.I.C. and J.F.A. A.J.M. also contributed to the funding acquisition, data analysis, supervision and editing of the manuscript. The funders had no role in study design, data collection and analysis, the decision to publish nor the preparation of the manuscript.

Corresponding author

Correspondence to Anne J. McNeil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Gary Leeke, Fu-Rong Xiu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

A detailed description of the materials, equipment, synthetic methods, as well as all processed data generated in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagnani, D.E., Kim, D., Camarero, S.I. et al. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 15, 222–229 (2023). https://doi.org/10.1038/s41557-022-01078-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01078-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing