Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Practical synthesis of the therapeutic leads tigilanol tiglate and its analogues

Abstract

Tigilanol tiglate is a natural product diterpenoid in clinical trials for the treatment of a broad range of cancers. Its unprecedented protein kinase C isoform selectivity make it and its analogues exceptional leads for PKC-related clinical indications, which include human immunodeficiency virus and AIDS eradication, antigen-enhanced cancer immunotherapy, Alzheimer’s disease and multiple sclerosis. Currently, the only source of tigilanol tiglate is a rain forest tree, Fontainea picrosperma, whose limited number and restricted distribution (northeastern Australia) has prompted consideration of designed tree plantations to address supply needs. Here we report a practical laboratory synthesis of tigilanol tiglate that proceeds in 12 steps (12% overall yield, >80% average yield per step) and can be used to sustainably supply tigilanol tiglate and its analogues, the latter otherwise inaccessible from the natural source. The success of this synthesis is based on a unique strategy for the installation of an oxidation pattern common to many biologically active tiglianes, daphnanes and their analogues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural analysis of tigilanol tiglate (1) and a retrosynthetic analysis of its synthesis from phorbol (2).
Fig. 2: Overview of the importance of the B-ring oxidation pattern in tigliane and daphnane natural products and the pharmacophore model.
Fig. 3: Reaction sequence from phorbol (2) to tigilanol tiglate (1).
Fig. 4: Representative biological data for synthetic EBC-46 and its analogues.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. The X-ray structure of phorbol-13-acetate bound to the PKC-C1 domain was obtained from the structure reported by Hurley (Protein Data Bank: 1PTR).

References

  1. Newton, A. C. & Brognard, J. Reversing the paradigm: protein kinase C as a tumor suppressor. Trends Pharmacol. Sci. 38, 438–447 (2017).

    Article  CAS  Google Scholar 

  2. Kim, J. T. et al. Latency reversal plus natural killer cells diminish HIV reservoir in vivo. Nat. Commun. 13, 121 (2022).

    Article  Google Scholar 

  3. Ramakrishna, S. et al. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin. Cancer Res. 25, 5329–5341 (2019).

    Article  CAS  Google Scholar 

  4. Hardman, C. et al. Synthesis and evaluation of designed PKC modulators for enhanced cancer immunotherapy. Nat. Commun. 11, 1–11 (2020).

    Article  Google Scholar 

  5. Marro, B. S. et al. Discovery of small molecules for the reversal of T-cell exhaustion. Cell Rep. 29, 3293–3302 (2019).

    Article  CAS  Google Scholar 

  6. Sun, M.-K., Hongpaisan, J., Lim, C. S. & Alkon, D. L. Bryostatin-1 restores hippocampal synapses and spatial learning and memory in adult fragile X mice. J. Pharmacol. Exp. Ther. 349, 393–401 (2014).

    Article  Google Scholar 

  7. Kornberg, M. D. et al. Bryostatin-1 alleviates experimental multiple sclerosis. Proc. Natl Acad. Sci. USA 115, 2186–2191 (2018).

    Article  CAS  Google Scholar 

  8. Gutiérrez, C. et al. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS 30, 1385–1392 (2016).

    Article  Google Scholar 

  9. Farlow, M. R. et al. A randomized, double-blind, placebo-controlled, phase II study assessing safety, tolerability, and efficacy of bryostatin in the treatment of moderately severe to severe Alzheimer’s disease. J. Alzheimers Dis. 67, 555–570 (2019).

    Article  CAS  Google Scholar 

  10. Panizza, B. J. et al. Phase I dose-escalation study to determine the safety, tolerability, preliminary efficacy and pharmacokinetics of an intratumoral injection of tigilanol tiglate (EBC-46). EBioMedicine 50, 433–441 (2019).

    Article  CAS  Google Scholar 

  11. Cullen, J. K. et al. Activation of PKC supports the anticancer activity of tigilanol tiglate and related epoxytiglianes. Sci Rep. 11, 1–14 (2021).

    Article  Google Scholar 

  12. Miller, J. et al. Dose characterization of the investigational anticancer drug tigilanol tiglate (EBC-46) in the local treatment of canine mast cell tumors. Front. Vet. Sci. 6, 1–10 (2019).

    Article  Google Scholar 

  13. Moses, R. L. et al. Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochem. Pharmacol. 178, 114048 (2020).

    Article  CAS  Google Scholar 

  14. Boyle, G. M. et al. Intra-lesional injection of the novel PKC activator EBC-46 rapidly ablates tumors in mouse models. PLoS ONE 9, 1–12 (2014).

    Article  Google Scholar 

  15. FDA Approves First Intratumoral Injection to Treat Non-Metastatic Mast Cell Tumors in Dogs https://www.fda.gov/news-events/press-announcements/fda-approves-first-intratumoral-injection-treat-non-metastatic-mast-cell-tumors-dogs (2020).

  16. De Ridder, T. R. et al. Randomized controlled clinical study evaluating the efficacy and safety of intratumoral treatment of canine mast cell tumors with tigilanol tiglate (EBC-46). J. Vet. Intern. Med. 35, 415–429 (2020).

    Article  Google Scholar 

  17. Lamont, R. W., Conroy, G. C., Reddell, P. & Ogbourne, S. M. Population genetic analysis of a medicinally significant Australian rainforest tree, Fontainea Picrosperma C.T. White (Euphorbiaceae): biogeographic patterns and implications for species domestication and plantation establishment. BMC Plant Biol. 16, 1–12 (2016).

    Article  Google Scholar 

  18. Grant, E. L. et al. Floral attraction and flower visitors of a subcanopy, tropical rainforest tree, Fontainea Picrosperma. Ecol. Evol. 11, 10468–10482 (2021).

    Article  Google Scholar 

  19. Paul, I., Reddell, W., Gordon, V. A. Tiglien-3-one derivatives. US Patent 9770431B2 (2017).

  20. Grant, E. Reproductive Biology, Flowering and Genetics of Fontainea picrosperma (Euphorbiaceae). PhD thesis, Univ. Sunshine Coast (2020).

  21. Wender, P. A., Quiroz, R. V. & Stevens, M. C. Function through synthesis-informed design. Acc. Chem. Res. 48, 752–760 (2015).

    Article  CAS  Google Scholar 

  22. Wang, Z. & Hui, C. Contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids. Org. Biomol. Chem. 19, 3791–3812 (2021).

    Article  CAS  Google Scholar 

  23. Wender, P. A., Verma, V. A., Paxton, T. J. & Pillow, T. H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 41, 40–49 (2008).

    Article  CAS  Google Scholar 

  24. Kim, K. E., Kim, A. N., McCormick, C. J. & Stoltz, B. M. Late-stage diversification: a motivating force in organic synthesis. J. Am. Chem. Soc. 143, 16890–16901 (2021).

    Article  CAS  Google Scholar 

  25. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Article  CAS  Google Scholar 

  26. Liu, W. C., Gong, T. & Zhu, P. Advances in exploring alternative Taxol sources. RSC Adv. 6, 48800–48809 (2016).

    Article  CAS  Google Scholar 

  27. Wender, P. A., Rice, K. D. & Schnute, M. E. The first formal asymmetric synthesis of phorbol. J. Am. Chem. Soc. 119, 7897–7898 (1997).

    Article  CAS  Google Scholar 

  28. Lee, K. & Cha, J. K. Formal synthesis of (+)-phorbol. J. Am. Chem. Soc. 123, 5590–5591 (2001).

    Article  CAS  Google Scholar 

  29. Kawamura, S., Chu, H., Felding, J. & Baran, P. S. Nineteen-step total synthesis of (+)-phorbol. Nature 532, 90–93 (2016).

    Article  CAS  Google Scholar 

  30. Wang, H. B., Wang, X. Y., Liu, L. P., Qin, G. W. & Kang, T. G. Tigliane diterpenoids from the Euphorbiaceae and Thymelaeaceae families. Chem. Rev. 115, 2975–3011 (2015).

    Article  CAS  Google Scholar 

  31. Ahmed, W. A. & Salimon, J. Phorbol ester as toxic constituents of tropical Jatropha curcas seed oil. Eur. J. Sci. Res. 31, 429–436 (2009).

    Google Scholar 

  32. Pagani, A., Gaeta, S., Savchenko, A. I., Williams, C. M. & Appendino, G. An improved preparation of phorbol from croton oil. Beilstein J. Org. Chem. 13, 1361–1367 (2017).

    Article  CAS  Google Scholar 

  33. Zimmermann, T., Franzyk, H. & Christensen, S. B. Phorbol rearrangements. J. Nat. Prod. 81, 2134–2137 (2018).

    Article  CAS  Google Scholar 

  34. Hou, Z., Yao, G. & Song, S. Daphnane-type diterpenes from genus Daphne and their anti-tumor activity. Chin. Herbal Medicines 13, 145–156 (2021).

    Article  Google Scholar 

  35. Zhang, G., Kazanietz, M. G., Blumberg, P. M. & Hurley, J. H. Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. Cell 81, 917–924 (1995).

    Article  CAS  Google Scholar 

  36. Wender, P. A., Donneley, A. C., Loy, B. A., Near, K. E., Staveness, D. in Natural Products in Medicinal Chemistry (ed. Hanessian, S.) 475–544 (Wiley-VCH, 2014).

  37. Schmidt, R. & Hecker, E. Autoxidation of phorbol esters under normal storage conditions. Cancer Res. 35, 1375–1377 (1994).

    Google Scholar 

  38. Amin, H. I. M. et al. The allylic oxidation of tigliane esters. Fitoterapia 148, 104802 (2021).

    Article  CAS  Google Scholar 

  39. Ghogare, A. A. & Greer, A. Using singlet oxygen to synthesize natural products and drugs. Chem. Rev. 116, 9994–10034 (2016).

    Article  CAS  Google Scholar 

  40. Sagadevan, A., Hwang, K. C. & Su, M.-D. Singlet oxygen-mediated selective C–H bond hydroperoxidation of ethereal hydrocarbons. Nat. Commun. 8, 1812 (2017).

    Article  Google Scholar 

  41. Lévesque, F. & Seeberger, P. H. Highly efficient continuous flow reactions using singlet oxygen as a ‘green’ reagent. Org. Lett. 13, 5008–5011 (2011).

    Article  Google Scholar 

  42. Volchkov, I. & Lee, D. Recent developments of direct rhenium-catalyzed [1,3]-transpositions of allylic alcohols and their silyl ethers. Chem. Soc. Rev. 43, 4384–4394 (2014).

    Article  Google Scholar 

  43. Morrill, C., Beutner, G. L. & Grubbs, R. H. Rhenium-catalyzed 1,3-isomerization of allylic alcohols: scope and chirality transfer. J. Org. Chem. 71, 7813–7825 (2006).

    Article  CAS  Google Scholar 

  44. Ferrier, R. J. & Hall, D. W. One-step synthesis of glycosidic spiroketals from 2,3-epoxybutyl glycoside derivatives. J. Chem. Soc. Perkin Trans. 1992, 3029–3034 (1992).

    Article  Google Scholar 

  45. Wender, P. A. et al. Gateway synthesis of daphnane congeners and their protein kinase C affinities and cell-growth activities. Nat. Chem. 3, 615–619 (2011).

    Article  CAS  Google Scholar 

  46. Boudreault, P. L., Mattler, J. K. & Wender, P. A. Studies on the regio- and diastereo-selective epoxidation of daphnanes and tiglianes. Tetrahedron Lett. 56, 3423–3427 (2015).

    Article  CAS  Google Scholar 

  47. Johnson, T. C. et al. Synthesis of Eupalinilide E, a promoter of human hematopoietic stem and progenitor cell expansion. J. Am. Chem. Soc. 138, 6068–6073 (2016).

    Article  CAS  Google Scholar 

  48. Benner, N. L. et al. Functional DNA delivery enabled by lipid-modified charge-altering releasable transporters (CARTs). Biomacromolecules 19, 2812–2824 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH) (CA31845 and AI124743; Z.O.G., D.J.F., O.D.M., Q.H.L.-N and E.N.). O.D.M. thanks the Molecular Pharmacology Training Program for support. We also thank H. Rahn for thoughtful discussions and assistance in the purification. Confocal images were acquired at the Stanford Neuroscience Microscopy Services. High-resolution mass spectrometric data were acquired at the Vincent Coates Foundation Mass Spectrometry Laboratory, supported in part by NIH P30 CA124435 utilizing the Stanford Cancer Institute Proteomics/Mass Spectrometry Shared Resource. Computational efforts were performed on the Sherlock cluster (Stanford University).

Author information

Authors and Affiliations

Authors

Contributions

Z.O.G., D.J.F., O.D.M., Q.H.L.-N. and E.N. prepared the compounds; D.J.F. performed the binding and translocation assays; E.N. performed the computational studies; P.A.W. and all the authors provided guidance on the design and analysis of experiments and wrote the manuscript.

Corresponding author

Correspondence to Paul A. Wender.

Ethics declarations

Competing interests

A provisional patent application (docket number S21-064) has been filed by Stanford University, on behalf of Paul A. Wender (principal investigator), Zachary O. Gentry, David J. Fanelli, Quang H. Luu-Nguyen, Owen D. McAteer and Edward Njoo, that covers a method to synthesize tigilanol tiglate (EBC-46) and related compounds from readily available starting materials.

Peer review

Peer review information

Nature Chemistry thanks Mireille Bilonda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and Methods, Supplementary discussion, Figs. 1–11, Tables 1–4 and additional references 49–56.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wender, P.A., Gentry, Z.O., Fanelli, D.J. et al. Practical synthesis of the therapeutic leads tigilanol tiglate and its analogues. Nat. Chem. 14, 1421–1426 (2022). https://doi.org/10.1038/s41557-022-01048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01048-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing