Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy

Abstract

Directly contrasting ultrafast excited-state dynamics in the gas and liquid phases is crucial to understanding the influence of complex environments. Previous studies have often relied on different spectroscopic observables, rendering direct comparisons challenging. Here, we apply extreme-ultraviolet time-resolved photoelectron spectroscopy to both gaseous and liquid cis-stilbene, revealing the coupled electronic and nuclear dynamics that underlie its isomerization. Our measurements track the excited-state wave packets from excitation along the complete reaction path to the final products. We observe coherent excited-state vibrational dynamics in both phases of matter that persist to the final products, enabling the characterization of the branching space of the S1–S0 conical intersection. We observe a systematic lengthening of the relaxation timescales in the liquid phase and a red shift of the measured excited-state frequencies that is most pronounced for the complex reaction coordinate. These results characterize in detail the influence of the liquid environment on both electronic and structural dynamics during a complete photochemical transformation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic illustration of the experimental methods.
Fig. 2: Time-resolved photoelectron spectra of the photoisomerization of gaseous cis-stilbene.
Fig. 3: Time-resolved photoelectron spectra of the photoisomerization of liquid cis-stilbene.
Fig. 4: Fourier transforms of the coherent oscillations observed in excited- and ground-state signals.
Fig. 5: Summary of the excited-state dynamics of cis-stilbene.

Data availability

The data generated or analysed during this study are included in this published Article (and its Supplementary Information file). Source data are provided with this paper.

References

  1. Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Cyr, D. R. & Hayden, C. C. Femtosecond time-resolved photoionization and photoelectron spectroscopy studies of ultrafast internal conversion in 1,3,5-hexatriene. J. Chem. Phys. 104, 771–774 (1996).

    Article  CAS  Google Scholar 

  4. Neumark, D. M. Time-resolved photoelectron spectroscopy of molecules and clusters. Annu. Rev. Phys. Chem. 52, 255–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. von Conta, A. et al. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat. Commun. 9, 3162 (2018).

    Article  Google Scholar 

  6. Smith, A. D. et al. Mapping the complete reaction path of a complex photochemical reaction. Phys. Rev. Lett. 120, 183003 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Squibb, R. J. et al. Acetylacetone photodynamics at a seeded free-electron laser. Nat. Commun. 9, 63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faubel, M., Steiner, B. & Toennies, J. P. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 106, 9013–9031 (1997).

    Article  CAS  Google Scholar 

  9. Suzuki, Y.-I. et al. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I to water in aqueous NaI solution. Chem. Sci. 2, 1094–1102 (2011).

    Article  CAS  Google Scholar 

  10. Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Thürmer, S. et al. Photoelectron angular distributions from liquid water: effects of electron scattering. Phys. Rev. Lett. 111, 173005– (2013).

    Article  PubMed  Google Scholar 

  12. Ojeda, J., Arrell, C. A., Longetti, L., Chergui, M. & Helbing, J. Charge-transfer and impulsive electronic-to-vibrational energy conversion in ferricyanide: ultrafast photoelectron and transient infrared studies. Phys. Chem. Chem. Phys. 71, 17052 (2017).

    Article  Google Scholar 

  13. Riley, J. W. et al. Unravelling the role of an aqueous environment on the electronic structure and ionization of phenol using photoelectron spectroscopy. J. Phys. Chem. Lett. 9, 678–682 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Nishitani, J., Yamamoto, Y.-i, West, C. W., Karashima, S. & Suzuki, T. Binding energy of solvated electrons and retrieval of true UV photoelectron spectra of liquids. Sci. Adv. 5, eaaw6896 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jordan, I., Huppert, M., Brown, M. A., van Bokhoven, J. A. & Wörner, H. J. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases. Rev. Sci. Instrum. 86, 123905 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Jordan, I. et al. Attosecond spectroscopy of liquid water. Science 369, 974–979 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Crim, F. F. Molecular reaction dynamics across the phases: similarities and differences. Faraday Discuss. 157, 9–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Harris, S. J. et al. Comparing molecular photofragmentation dynamics in the gas and liquid phases. Phys. Chem. Chem. Phys. 15, 6567–6582 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Syage, J., Lambert, W. R., Felker, P., Zewail, A. & Hochstrasser, R. Picosecond excitation and trans-cis isomerization of stilbene in a supersonic jet: dynamics and spectra. Chem. Phys. Lett. 88, 266–270 (1982).

    Article  CAS  Google Scholar 

  20. Troe, J. & Weitzel, K.-M. MNDO calculations of stilbene potential energy properties relevant for the photoisomerization dynamics. J. Chem. Phys. 88, 7030–7039 (1988).

    Article  CAS  Google Scholar 

  21. Sension, R., Repinec, S. & Hochstrasser, R. Femtosecond laser study of energy disposal in the solution phase isomerization of stilbene. J.Chem. Phys. 93, 9185–9188 (1990).

    Article  CAS  Google Scholar 

  22. Waldeck, D. H. Photoisomerization dynamics of stilbenes in polar solvents. J. Mol. Liq. 57, 127–148 (1993).

    Article  CAS  Google Scholar 

  23. Nikowa, L., Schwarzer, D., Troe, J. & Schroeder, J. Viscosity and solvent dependence of low-barrier processes: photoisomerization of cis-stilbene in compressed liquid solvents. J. Chem. Phys. 97, 4827–4835 (1992).

    Article  CAS  Google Scholar 

  24. Rodier, J. M. & Myers, A. B. cis-Stilbene photochemistry: solvent dependence of the initial dynamics and quantum yields. J. Am. Chem. Soc. 115, 10791–10795 (1993).

    Article  CAS  Google Scholar 

  25. Takeuchi, S. et al. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322, 1073–1077 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Quenneville, J. & Martínez, T. J. Ab initio study of cis–trans photoisomerization in stilbene and ethylene. J. Phys. Chem. A 107, 829–837 (2003).

    Article  CAS  Google Scholar 

  27. Schoenlein, R., Peteanu, L., Mathies, R. & Shank, C. The first step in vision: femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Willner, I. & Rubin, S. Control of the structure and functions of biomaterials by light. Angew. Chem. Int. Ed. Engl. 35, 367–385 (1996).

    Article  CAS  Google Scholar 

  29. Weir, H., Williams, M., Parrish, R. M., Hohenstein, E. G. & Martínez, T. J. Nonadiabatic dynamics of photoexcited cis-stilbene using ab initio multiple spawning. J. Phys. Chem. B 124, 5476–5487 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Williams, M. et al. Unmasking the cis-stilbene phantom state via vacuum ultraviolet time-resolved photoelectron spectroscopy and ab initio multiple spawning. J. Phys. Chem. Lett. 12, 6363–6369 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Fuß, W., Kosmidis, C., Schmid, W. & Trushin, S. The lifetime of the perpendicular minimum of cis-stilbene observed by dissociative intense-laser field ionization. Chem. Phys. Lett. 385, 423–430 (2004).

    Article  Google Scholar 

  32. Chiang, W.-Y. & Laane, J. Fluorescence spectra and torsional potential functions for trans-stilbene in its S0 and S1 (π, π*) electronic states. J. Chem. Phys. 100, 8755–8767 (1994).

    Article  CAS  Google Scholar 

  33. Kwok, W. M. et al. Time-resolved resonance raman study of S1 cis-stilbene and its deuterated isotopomers. J. Raman Spectrosc. 34, 886–891 (2003).

    Article  CAS  Google Scholar 

  34. Kukura, P. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Schapiro, I. et al. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J. Am. Chem. Soc. 133, 3354–3364 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Fdez. Galván, I., Delcey, M. G., Pedersen, T. B., Aquilante, F. & Lindh, R. Analytical state-average complete-active-space self-consistent field nonadiabatic coupling vectors: implementation with density-fitted two-electron integrals and application to conical intersections. J. Chem. Theory Comput. 12, 3636–3653 (2016).

    Article  PubMed  Google Scholar 

  37. Pollak, E. Transition state theory for photoisomerization rates of trans-stilbene in the gas and liquid phases. J. Chem. Phys. 86, 3944–3949 (1987).

    Article  CAS  Google Scholar 

  38. Chudoba, C., Riedle, E., Pfeiffer, M. & Elsaesser, T. Vibrational coherence in ultrafast excited state proton transfer. Chem. Phys. Lett. 263, 622–628 (1996).

    Article  CAS  Google Scholar 

  39. Takeuchi, S. & Tahara, T. Femtosecond absorption study of photodissociation of diphenylcyclopropenone in solution: reaction dynamics and coherent nuclear motion. J. Chem. Phys. 120, 4768–4776 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi, S. & Tahara, T. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. J. Phys. Chem. A 109, 10199–10207 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Monni, R. et al. Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution. Proc. Natl Acad. Sci. USA 115, E6396–E6403 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banin, U., Waldman, A. & Ruhman, S. Ultrafast photodissociation of I3 in solution: direct observation of coherent product vibrations. J. Chem. Phys. 96, 2416–2419 (1992).

    Article  CAS  Google Scholar 

  43. von Conta, A., Huppert, M. & Wörner, H. J. A table-top monochromator for tunable femtosecond XUV pulses generated in a semi-infinite gas cell: experiment and simulations. Rev. Sci. Instrum. 87, 073102 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Perry, C. F. et al. Ionization energy of liquid water revisited. J. Phys. Chem. Lett. 11, 1789–1794 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Walt, S. G. et al. Role of multi-electron effects in the asymmetry of strong-field ionization and fragmentation of polar molecules: the methyl halide series. J. Phys. Chem. A 119, 11772–11782 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Walt, S. G. et al. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering. Nat. Commun. 8, 15651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Svoboda, V., Ram, N. B., Rajeev, R. & Wörner, H. J. Time-resolved photoelectron imaging with a femtosecond vacuum-ultraviolet light source: dynamics in the Ã/B~- and F~-bands of SO2. J. Chem. Phys. 146, 084301 (2017).

    Article  PubMed  Google Scholar 

  48. Belyaev, A. K., Lasser, C. & Trigila, G. Landau–Zener type surface hopping algorithms. J. Chem. Phys. 140, 224108 (2014).

    Article  PubMed  Google Scholar 

  49. Suchan, J., Janoš, J. & Slavíček, P. Pragmatic approach to photodynamics: mixed Landau–Zener surface hopping with intersystem crossing. J. Chem. Theory Comput. 16, 5809–5820 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ceriotti, M., Bussi, G. & Parrinello, M. Colored-noise thermostats à la Carte. J. Chem. Theory Comput. 6, 1170–1180 (2010).

    Article  CAS  Google Scholar 

  51. Hollas, D., Muchová, E. & Slavíček, P. Modeling liquid photoemission spectra: path-integral molecular dynamics combined with tuned range-separated hybrid functionals. J. Chem. Theory Comput. 12, 5009–5017 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Hollas, D., Suchan, J., Ončák, M. & Slavíček, ABIN v1.1 (2018), source code available at https://github.com/PHOTOX or 10.5281/zenodo.1228463

  53. GLE4MD input library, see http://gle4md.org

  54. Dral, P. O. et al. Semiempirical quantum-chemical orthogonalization-corrected methods: theory, implementation, and parameters. J. Chem. Theory Comput. 12, 1082–1096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silva-Junior, M. R. & Thiel, W. Benchmark of electronically excited states for semiempirical methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J. Chem. Theory Comput. 6, 1546–1564 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Janoš, J. et al. Conformational control of the photodynamics of a bilirubin dipyrrinone subunit: femtosecond spectroscopy combined with nonadiabatic simulations. J. Phys. Chem. A 124, 10457–10471 (2020).

    Article  PubMed  Google Scholar 

  57. Dewar, M. J. & Thiel, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99, 4899–4907 (1977).

    Article  CAS  Google Scholar 

  58. Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 242–253 (2012).

    Article  CAS  Google Scholar 

  59. Plasser, F. et al. Efficient and flexible computation of many-electron wave function overlaps. J. Chem. Theory Comput. 12, 1207–1219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Martinez, H. Weir and M. Williams for discussions and for providing the data shown in Supplementary Fig. 7a. We acknowledge financial support from ETH Zürich and the Swiss National Science Foundation through grant 200021_172946 (H.J.W.). Z.Y. acknowledges financial support from an ETH Career Seed Grant No SEED-12 19-1/1-004952-000. C.W. additionally acknowledges support from the National Natural Science Foundation of China (Grant Nos 11534004, 11627807, 11774130) and the financial support from Jilin University. J.S. and P.S. are grateful for the financial support of the Czech Science Foundation (Grant No. 21-26601X, EXPRO project). J.S. is a student of the International Max Planck Research School ‘Many-Particle Systems in Structured Environments’.

Author information

Authors and Affiliations

Authors

Contributions

H.J.W. and C.W. conceived the experiments. C.W., M.D.J.W. and V.S. conducted the gas-phase measurements. P.Z. and C.W. conducted the liquid-phase measurements with the support of T.T.L., Z.Y. and C.P. Data analysis was performed by C.W., P.Z., T.T.L., V.S. and M.D.J.W. H.J.W supervised the experimental part of the study. All time-dependent calculations were performed by J.S. and P.S. Additional ab initio calculations were provided by M.D.J.W. Space–charge effects were simulated by P.Z. All authors contributed to the interpretation of the results and to the preparation and finalization of the manuscript.

Corresponding authors

Correspondence to Pengju Zhang, Petr Slavíček or Hans Jakob Wörner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Thomas Weinacht and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

The experimental setup for the liquid-phase TRPES measurements.

Extended Data Fig. 2

The experimental setup for the gas-phase measurements.

Supplementary information

Supplementary Information File

Supplementary Figs. 1–13, text and Tables 1–17.

Supplementary Data

Readable versions of tables in Supplementary Section 8.

Source data

Source Data Fig. 2

Plotted data in numerical format.

Source Data Fig. 3

Plotted data in numerical format..

Source Data Fig. 4

Plotted data in numerical format

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Waters, M.D.J., Zhang, P. et al. Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy. Nat. Chem. 14, 1126–1132 (2022). https://doi.org/10.1038/s41557-022-01012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01012-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing