Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

σ–σ Stacked supramolecular junctions

Abstract

Intermolecular charge transport plays an essential role in organic electronic materials and biological systems. To date, experimental investigations of intermolecular charge transport in molecular materials and electronic devices have been restricted to conjugated systems in which π–π stacking interactions are involved. Herein we demonstrate that the σ–σ stacking interactions between neighbouring non-conjugated molecules offer an efficient pathway for charge transport through supramolecular junctions. The conductance of σ–σ stacked molecular junctions formed between two non-conjugated cyclohexanethiol or single-anchored adamantane molecules is comparable to that of π–π stacked molecular junctions formed between π-conjugated benzene rings. The current–voltage characteristics and flicker noise analysis demonstrate the existence of stacked molecular junctions formed between the electrode pairs and exhibit the characteristics of through-space charge transport. Density functional theory calculations combined with the non-equilibrium Green’s function method reveal that efficient charge transport occurs between two molecules configured with σ–σ stacking interactions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Break junction measurements of π-conjugated benzenethiol and non-conjugated cyclohexanethiol.
Fig. 2: Break junction measurements of adamantane-based non-conjugated supramolecular junctions.
Fig. 3: Investigation of IV characteristics.
Fig. 4: Theoretical calculations of the transmission of molecular junctions.

Data availability

All data that support the findings of this study are available within this article and its Supplementary Information. Source data are provided with this paper.

Code availability

The data analysis of conductance measurements in this work was performed using our open-source code XMe analysis, which is available at Github (https://github.com/Pilab-XMU/XMe_DataAnalysis) and Zenodo (https://doi.org/10.5281/zenodo.6578853).

References

  1. Kim, T., Park, J. Y., Hwang, J., Seo, G. & Kim, Y. Supramolecular two-dimensional systems and their biological applications. Adv. Mater. 32, 2002405 (2020).

    CAS  Article  Google Scholar 

  2. Kilchherr, F. et al. Single-molecule dissection of stacking forces in DNA. Science 353, aaf5508 (2016).

    PubMed  Article  Google Scholar 

  3. Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Olivo, G., Capocasa, G., Del Giudice, D., Lanzalunga, O. & Di Stefano, S. New horizons for catalysis disclosed by supramolecular chemistry. Chem. Soc. Rev. 50, 7681–7772 (2021).

    CAS  PubMed  Article  Google Scholar 

  5. Peng, W., Qu, X., Shaik, S. & Wang, B. Deciphering the oxygen activation mechanism at the CuC site of particulate methane monooxygenase. Nat. Catal. 4, 266–273 (2021).

    CAS  Article  Google Scholar 

  6. de Greef, T. F. A. & Meijer, E. W. Supramolecular polymers. Nature 453, 171–173 (2008).

    PubMed  Article  Google Scholar 

  7. Amabilino, D. B., Smith, D. K. & Steed, J. W. Supramolecular materials. Chem. Soc. Rev. 46, 2404–2420 (2017).

    CAS  PubMed  Article  Google Scholar 

  8. Li, C. et al. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation. Nat. Mater. 19, 900–909 (2020).

    CAS  PubMed  Article  Google Scholar 

  9. Xu, L. et al. Enantiomeric separation of semiconducting single-walled carbon nanotubes by acid cleavable chiral polyfluorene. ACS Nano 15, 4699–4709 (2021).

    CAS  PubMed  Article  Google Scholar 

  10. Tang, M. et al. Tailoring π-conjugated systems: from π-π stacking to high-rate-performance organic cathodes. Chem 4, 2600–2614 (2018).

    CAS  Article  Google Scholar 

  11. Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804–828 (2021).

    CAS  Article  Google Scholar 

  12. Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. Aromatic interactions. J. Chem. Soc. Perkin Trans. 2, 651–669 (2001).

    Article  Google Scholar 

  13. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. Origin of attraction and directionality of the π/π interaction: model chemistry calculations of benzene dimer interaction. J. Am. Chem. Soc. 124, 104–112 (2001).

    Article  Google Scholar 

  14. Parrish, R. M. & Sherrill, C. D. Quantum-mechanical evaluation of π–π versus substituent–π interactions in π stacking: direct evidence for the Wheeler–Houk picture. J. Am. Chem. Soc. 136, 17386–17389 (2014).

    CAS  PubMed  Article  Google Scholar 

  15. Hunter, C. A. & Sanders, J. K. M. The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    CAS  Article  Google Scholar 

  16. Martinez, C. R. & Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 3, 2191–2201 (2012).

    CAS  Article  Google Scholar 

  17. Sinnokrot, M. O. & Sherrill, C. D. High-accuracy quantum mechanical studies of π–π interactions in benzene dimers. J. Phys. Chem. A 110, 10656–10668 (2006).

    CAS  PubMed  Article  Google Scholar 

  18. Alonso, M. et al. Understanding the fundamental role of π/π, σ/σ, and σ/π dispersion interactions in shaping carbon-based materials. Chem. Eur. J. 20, 4931–4941 (2014).

    CAS  PubMed  Article  Google Scholar 

  19. Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 47, 3430–3434 (2008).

    CAS  Article  Google Scholar 

  20. Bloom, J. W. G. & Wheeler, S. E. Taking the aromaticity out of aromatic interactions. Angew. Chem. Int. Ed. 50, 7847–7849 (2011).

    CAS  Article  Google Scholar 

  21. Fokin, A. A., Gerbig, D. & Schreiner, P. R. σ/σ- and π/π-interactions are equally important: multilayered graphanes. J. Am. Chem. Soc. 133, 20036–20039 (2011).

    CAS  PubMed  Article  Google Scholar 

  22. Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2015).

    CAS  Article  Google Scholar 

  23. Slowinski, K., Chamberlain, R. V., Miller, C. J. & Majda, M. Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes. J. Am. Chem. Soc. 119, 11910–11919 (1997).

    CAS  Article  Google Scholar 

  24. Duati, M. et al. Electron transport across hexa-peri-hexabenzocoronene units in a metal–self-assembled monolayer–metal junction. Adv. Mater. 18, 329–333 (2006).

    CAS  Article  Google Scholar 

  25. York, R. L., Nguyen, P. T. & Slowinski, K. Long-range electron transfer through monolayers and bilayers of alkanethiols in electrochemically controlled Hg–Hg tunneling junctions. J. Am. Chem. Soc. 125, 5948–5953 (2003).

    CAS  PubMed  Article  Google Scholar 

  26. Liu, Y., Qiu, X., Soni, S. & Chiechi, R. C. Charge transport through molecular ensembles: recent progress in molecular electronics. Chem. Phys. Rev. 2, 021303 (2021).

    Article  Google Scholar 

  27. Wu, S. et al. Molecular junctions based on aromatic coupling. Nat. Nanotechnol. 3, 569–574 (2008).

    CAS  PubMed  Article  Google Scholar 

  28. Batra, A. et al. Quantifying through-space charge transfer dynamics in π-coupled molecular systems. Nat. Commun. 3, 1086 (2012).

    PubMed  Article  Google Scholar 

  29. Carini, M. et al. High conductance values in π-folded molecular junctions. Nat. Commun. 8, 15195 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Stefani, D. et al. Large conductance variations in a mechanosensitive single-molecule junction. Nano Lett. 18, 5981–5988 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Song, P. et al. Stable molecular diodes based on π–π interactions of the molecular frontier orbitals with graphene electrodes. Adv. Mater. 30, 1706322 (2018).

    Article  Google Scholar 

  32. Li, X. et al. Structure-independent conductance of thiophene-based single-stacking junctions. Angew. Chem. Int. Ed. 59, 3280–3286 (2020).

    CAS  Article  Google Scholar 

  33. Frisenda, R., Janssen, V. A. E. C., Grozema, F. C., van der Zant, H. S. J. & Renaud, N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat. Chem. 8, 1099–1104 (2016).

    CAS  PubMed  Article  Google Scholar 

  34. Kiguchi, M. et al. Highly conductive [3×n] gold-ion clusters enclosed within self-assembled cages. Angew. Chem. Int. Ed. 52, 6202–6205 (2013).

    CAS  Article  Google Scholar 

  35. Kiguchi, M. et al. Electron transport through single molecules comprising aromatic stacks enclosed in self-assembled cages. Angew. Chem. Int. Ed. 50, 5708–5711 (2011).

    CAS  Article  Google Scholar 

  36. Schneebeli, S. T. et al. Single-molecule conductance through multiple π–π-stacked benzene rings determined with direct electrode-to-benzene ring connections. J. Am. Chem. Soc. 133, 2136–2139 (2011).

    CAS  PubMed  Article  Google Scholar 

  37. Gruber, C. M. et al. Resonant optical antennas with atomic-sized tips and tunable gaps achieved by mechanical actuation and electrical control. Nano Lett. 20, 4346–4353 (2020).

    CAS  PubMed  Article  Google Scholar 

  38. Bai, J. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).

    CAS  PubMed  Article  Google Scholar 

  39. Zang, Y. et al. Voltage-induced single-molecule junction planarization. Nano Lett. 21, 673–679 (2021).

    CAS  PubMed  Article  Google Scholar 

  40. Magyarkuti, A., Adak, O., Halbritter, A. & Venkataraman, L. Electronic and mechanical characteristics of stacked dimer molecular junctions. Nanoscale 10, 3362–3368 (2018).

    CAS  PubMed  Article  Google Scholar 

  41. Hong, W. et al. An MCBJ case study: the influence of pi-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2, 699–713 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  42. Liu, J. et al. Transition from tunneling leakage current to molecular tunneling in single-molecule junctions. Chem 5, 390–401 (2019).

    CAS  Article  Google Scholar 

  43. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    CAS  PubMed  Article  Google Scholar 

  44. Leary, E. et al. Incorporating single molecules into electrical circuits. The role of the chemical anchoring group. Chem. Soc. Rev. 44, 920–942 (2015).

    CAS  PubMed  Article  Google Scholar 

  45. Hong, W. et al. Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134, 2292–2304 (2012).

    CAS  PubMed  Article  Google Scholar 

  46. Adak, O. et al. Flicker noise as a probe of electronic interaction at metal–single molecule interfaces. Nano Lett. 15, 4143–4149 (2015).

    CAS  PubMed  Article  Google Scholar 

  47. Tang, C. et al. Identifying the conformational isomers of single-molecule cyclohexane at room temperature. Chem 6, 2770–2781 (2020).

    CAS  Article  Google Scholar 

  48. Zhang, Q. et al. Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions. Nano Lett. 16, 6534–6540 (2016).

    CAS  PubMed  Article  Google Scholar 

  49. Cheng, Z.-L. et al. In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6, 353–357 (2011).

    CAS  PubMed  Article  Google Scholar 

  50. Chen, F., Li, X., Hihath, J., Huang, Z. & Tao, N. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).

    CAS  PubMed  Article  Google Scholar 

  51. Tsutsui, M., Shoji, K., Morimoto, K., Taniguchi, M. & Kawai, T. Thermodynamic stability of single molecule junctions. Appl. Phys. Lett. 92, 223110 (2008).

    Article  Google Scholar 

  52. González, M. T. et al. Stability of single- and few-molecule junctions of conjugated diamines. J. Am. Chem. Soc. 135, 5420–5426 (2013).

    PubMed  Article  Google Scholar 

  53. Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

    CAS  PubMed  Article  Google Scholar 

  54. Xiang, A. et al. The origin of the transition voltage of gold–alkanedithiol–gold molecular junctions. Chem. Phys. 465–466, 40–45 (2016).

    Article  Google Scholar 

  55. Guo, S., Hihath, J., Díez-Pérez, I. & Tao, N. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011).

    CAS  PubMed  Article  Google Scholar 

  56. Beebe, J. M., Kim, B., Gadzuk, J. W., Frisbie, C. D. & Kushmerick, J. G. Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801 (2006).

    PubMed  Article  Google Scholar 

  57. Mirjani, F., Thijssen, J. M. & van der Molen, S. J. Advantages and limitations of transition voltage spectroscopy: a theoretical analysis. Phys. Rev. B 84, 115402 (2011).

    Article  Google Scholar 

  58. Bâldea, I. Ambipolar transition voltage spectroscopy: analytical results and experimental agreement. Phys. Rev. B 85, 035442 (2012).

    Article  Google Scholar 

  59. Trouwborst, M. L. et al. Transition voltage spectroscopy and the nature of vacuum tunneling. Nano Lett. 11, 614–617 (2011).

    CAS  PubMed  Article  Google Scholar 

  60. Gryn’ova, G. & Corminboeuf, C. Topology-driven single-molecule conductance of carbon nanothreads. J. Phys. Chem. Lett. 10, 825–830 (2019).

    PubMed  Article  Google Scholar 

  61. Tang, C. et al. Multicenter-bond-based quantum interference in charge transport through single-molecule carborane junctions. Angew. Chem. Int. Ed. 58, 10601–10605 (2019).

    CAS  Article  Google Scholar 

  62. Chen, Z. et al. Modularized tuning of charge transport through highly twisted and localized single-molecule junctions. J. Phys. Chem. Lett. 10, 3453–3458 (2019).

    CAS  PubMed  Article  Google Scholar 

  63. Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015).

    CAS  PubMed  Article  Google Scholar 

  64. Lovat, G. et al. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 12, 1050–1054 (2017).

    CAS  PubMed  Article  Google Scholar 

  65. Huisman, E. H., Guédon, C. M., van Wees, B. J. & van der Molen, S. J. Interpretation of transition voltage spectroscopy. Nano Lett. 9, 3909–3913 (2009).

    CAS  PubMed  Article  Google Scholar 

  66. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    CAS  PubMed  Article  Google Scholar 

  67. Frisch, M. et al. Gaussian 16, revision A.03 (Gaussian, Inc., 2016).

  68. Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).

    CAS  Article  Google Scholar 

  69. Smidstrup, S. et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2020).

    CAS  PubMed  Article  Google Scholar 

  70. Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos 21905238, 21673195, 21722305, 21973079), National Key R&D Program of China (2017YFA0204902) and Natural Science Foundation of Fujian Province (2021J06008). We thank J. Liu, J. Zheng, J. Bai, X. Li, Z. Tan and Y. Zhang for discussion during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

W.H. and Y.Y. supervised this project. A.F. conceived the idea of molecular design and wrote the first version of this manuscript. A.F. and M.A.Y.A.-S. carried out the break junction experiments. A.F. analysed the data with the help of Z.P., S.Z. and Z.X.; Y.Z. performed theoretical calculations with the help of B.Z. and L.C.; and W.X. synthesized the molecules for the control experiment. All authors conceived the work and contributed to the revision of the manuscript.

Corresponding authors

Correspondence to Yang Yang or Wenjing Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Mercedes Alonso, Ganna Gryn’ova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Table 1 and Methods.

Supplementary Data 1

Source data of Supplementary Figs.13, 18–22, 32 and 33.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, A., Zhou, Y., Al-Shebami, M.A.Y. et al. σ–σ Stacked supramolecular junctions. Nat. Chem. 14, 1158–1164 (2022). https://doi.org/10.1038/s41557-022-01003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01003-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing